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Introduction 

Prostate cancer is a significant health concern for men 
worldwide. According to the World Health Organization 
(WHO), prostate cancer is the second most common 
cancer among men globally, with an estimated 1.4 
million new cases and 375,000 deaths in 2020 (World 
Health Organization, 2023). 

Prostate cancer is a type of cancer that develops in the 
prostate gland, a small gland located below the bladder 
in men. It is the most commonly diagnosed cancer in 
men and the second leading cause of cancer deaths in 
men in the United States (Jemal et al., 2017). The 
incidence of prostate cancer varies widely across 
different regions of the world, with the highest 
incidence rates observed in North America, Europe, 
and Australia. The lowest incidence rates are seen in 
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Abstract 
Background: Prostate cancer is the second most common type of cancer in men. The 
histone lysine demethylase enzyme is believed to be one of the genetic factors that cause 
prostate cancer. Based on in vivo testing, a group of compounds from the aminothiazole, 
benzohydrazide, pyridine, namoline, and parnate classes have been experimentally 
proven to be inhibitors of the histone lysine demethylase enzyme.     Objective: This study 
aimed to investigate the interaction of 20 compounds consisting of aminothiazole, 
benzohydrazide, pyridine, namoline, and parnate derivatives with histone lysine 
demethylase enzymes (KDM1A, KDM4A, KDM4C, KDM4E, and KDM5B) in silico.    
Method: Molecular docking was performed using Autodock Tools v.4.2.3 to obtain the 
affinity of test compounds against the target molecule. This was followed by molecular 
dynamics (MD) simulation of some test compounds with the lowest inhibition constant 
using Gromacs software. Toxicity prediction was conducted to predict the safety of the 
test compounds.    Result: The docking results revealed the top five compounds for each 
receptor with the lowest inhibition constant and free binding energy value (∆G), 
suggesting the best affinity to histone lysine demethylase enzymes. The results from MD 
showed that the compounds with the codes aminothiazole, pyridine, parnate 1, parnate 
2, and parnate 5 were stable when bound to the KDM1A receptor. The toxicity test results 
also indicated that the test compounds were safe and had a low health risk, as they were 
neither genotoxic nor non-genotoxic carcinogens.    Conclusion: Based on the research 
results, it can be concluded that compounds with the codes aminothiazole, pyridine, 
parnate 1, parnate 2, and parnate 5 can serve as inhibitors of histone lysine demethylase 
enzymes on the KDM1A receptor and are stable when bound to the receptor. 
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Asia, Africa, and South America. However, the incidence 
rates of prostate cancer in these regions have been 
increasing over the years, partly due to increased life 
expectancy and changes in lifestyle factors (Center et al., 
2012). 

The exact causes of prostate cancer are not fully 
understood, but it is believed to be related to a 
combination of genetic, environmental, and lifestyle 
factors (Heidenreich et al., 2014). Some known risk 
factors for prostate cancer include age, family history, 
and race (Siegel et al., 2021).  

One of the challenges of prostate cancer is that it often 
does not cause symptoms in its early stages. As cancer 
grows, it can cause symptoms such as difficulty urinating, 
weak or interrupted urine flow, blood in the urine or 
semen, and pain or discomfort in the pelvic area. 
However, these symptoms can also be caused by other 
conditions, so it is important to see a doctor if they occur. 
Prostate cancer treatment depends on various factors, 
including the stage of cancer, the age and overall health 
of the patient, and the patient's preferences. Treatment 
options may include surgery to remove the prostate 
gland, radiation therapy, hormone therapy, or a 
combination of these treatments (American Cancer 
Society, 2022).  

Histone lysine demethylase enzyme is estimated as one 
of the genetic factors causing prostate cancer. This 
enzyme causes methyl groups to detach from histones, 
resulting in the impact of histone methylation affecting 
the transcriptional activity of DNA. The process of 
effector protein binding to modified chromatin 
templates can lead to misrepresentation or activation of 
cancer cells. Thus, blocking histone lysine demethylase is 
one of the epigenetic mechanisms inhibiting growth and 
preventing cancer development, especially prostate 
cancer (Wang et al., 2014).  

Histone lysine demethylase enzymes (KDMs) are a group 
of epigenetic regulators that play a crucial role in 
regulating gene expression by removing methyl groups 
from histone lysine residues. The dysregulation of KDMs 
has been implicated in various diseases, including 
cancer. In particular, the overexpression of KDMs has 
been observed in several types of cancer, including 
prostate cancer, and is associated with poor patient 
prognosis (Jerónimo et al., 2011). KDMs are classified 
into two main families: the Jumonji C (JmjC) domain-
containing enzymes and the lysine-specific demethylase 
(LSD) enzymes. The JmjC domain-containing enzymes 
are involved in the demethylation of lysine residues in 
histones H3 and H4, whereas the LSD enzymes are 
responsible for the demethylation of lysine residues in 
histone H3 (Cloos et al., 2008). Several small-molecule 
inhibitors have been developed to target KDMs to inhibit 

their activity and reduce cancer cell proliferation 
(Muttaqin et al., 2017). 

In this research, we utilised computational simulations to 
investigate the interactions between compounds 
derived from coumarin, N-oxalylglycine, organo-
selenium, organosulfur, and pyridine with KDM enzymes 
using molecular docking, molecular dynamics (MD), and 
toxicity prediction analyses. The findings of this study 
could potentially aid in the discovery and development 
of novel anticancer agents derived from natural sources. 
 

Methods 

Macromolecule preparation 

Crystal structures of five KDM enzymes were 
downloaded from the website www.rcsb.org with PDB 
IDs 4UV8 (KDM1A), 3PDQ (KDM4A), 5FJK (KDM4C), 2W2I 
(KDM4E), and 5A3P (KDM5B) (Chang et al., 2011; 
Hillringhaus et al., 2011; Johansson et al., 2016; Vianello 
et al., 2014). 

 

Ligand preparation 

The chemical structures of twenty compounds of 
aminothiazole, benzohydrazide, namoline, piridine, and 
parnate derivatives in Table I were built using 
ChemOffice 2010 software, then optimised using 
Gaussian 09 software with Density Functional Theory 
(DFT) method, B3LYP, and basis set 6-31G (Frisch et al., 
2009). 

 

Molecular docking 

Each ligand molecule was prepared for docking using 
AutoDock Tools 4.2.3. Hydrogen atoms were added, and 
partial charges of each atom resulting from the DFT 
calculations were incorporated. Grid maps were created 
by centering the grid box at the position of the natural 
ligand of each macromolecule with a spacing of 0.375 Å 
and size covering the binding cavity of each target. Each 
simulation used the Lamarckian genetic algorithm and 
50 docking runs (Morris et al., 2009; Muttaqin et al., 
2022). 

 

Molecular dynamic simulation 

Five ligands with the best docking score for each target 
based on free binding energy and inhibition constant 
were chosen for further MD study. The MD simulation 
was carried out using Gromacs 5.1.1 software 
(GROMACS Documentation Release 2023 GROMACS 
Development Team, 2023). The Amber99sb-ildn force 
field and the general AMBER force field (GAFF) were 
used to parameterise the atoms of the macromolecules 
and ligands, respectively. 
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Table I: The 20 aminothiazole, benzohydrazide, namoline, piridine, and parnate derivatives used 

No Compound Code 

1 N-(4-(4-(2-aminocyclopropyl)phenoxy)-1-(benzylamino)-1-oxobutan-2-yl)benzamide PARNATE 1 

2 N-(4-(3-(2-aminocyclopropyl)phenoxy)-1-(benzylamino)-1-oxobutan-2-yl)benzamide PARNATE 2 

3 N-(4-(2-aminocyclopropyl)phenyl)benzamide PARNATE 3 

4 benzyl 4-(2-aminocyclopropyl)phenylcarbamate PARNATE 4 

5 benzyl 1-(4-(2-aminocyclopropyl)phenylamino)-1-oxo-3-phenylpropan-2-ylcarbamate PARNATE 5 

6 benzyl 1-(4-(2-aminocyclopropyl)phenylamino)-3-(1H-indol-2-yl)-1-oxopropan-2-ylcarbamate PARNATE 6 

7 2-(perfluorophenyl)cyclopropanamine PARNATE 7 

8 2-(2-(benzyloxy)-3-fluorophenyl)cyclopropanamine PARNATE 8 

9 2-(2-(benzyloxy)-3,5-difluorophenyl)cyclopropanamine PARNATE 9 

10 2-(2-(3-(aminomethyl)benzyloxy)-3,5-difluorophenyl)cyclopropanamine PARNATE 10 

11 2-(2-(3-ethylbenzyloxy)-3,5-difluorophenyl)cyclopropanamine PARNATE 11 

12 N-(3-(2,4-dichlorophenoxy)propyl)-N-methylprop-2-yn-1-amine PARNATE 12 

13 3-[4-[(1R,2S)-2-aminocyclopropyl]phenyl]phenol PARNATE 14 

14 (S)-2-(4-(3-fluorobenzyloxy)benzylamino)propanamide PARNATE 15 

15 (R)-4-(4-isocyanophenyl)-5-(pyrrolidin-3-ylmethoxy)-2-p-tolylpyridine PYRIDINE 

16 N-(4-acetylthiazol-2-yl)-[1,1'-biphenyl]-3-sulfonamide AMINOTHIAZOLE 1 

17 N-(3-chlorophenyl)-5-(prop-1-en-2-yl)thiazol-2-amine AMINOTHIAZOLE 2 

18 N-(4-chlorophenyl)-5-(prop-1-en-2-yl)thiazol-2-amine AMINOTHIAZOLE 3 

19 3-chloro-6-nitro-2-(trifluoromethyl)-4aH-chromen-4(8aH)-one NAMOLINE 

20 (E)-N'-(1-(5-chloro-2-hydroxyphenyl)ethylidene)-3-(morpholinosulfonyl)Benzohidrazid BENZOHYDRAZIDE 

Energy minimisation was carried out on the 
macromolecules in vacuum pressure using the steepest 
descent algorithm, followed by solvating the 
macromolecule with TIP3P water molecules in an 
octahedron box. Positive and negative ions were added 
to the system at a concentration of 0.15 N to neutralise 
all charges. Energy minimisation was again performed on 
the macromolecule/solvent/ion system to release 
strains resulting from the solvation procedure; the 
steepest descent algorithm was used again.  

Next, the system was carefully heated to 310 K and 
pressurized to 1 atm using the constant-volume, 
constant-temperature (NVT) and constant-pressure, 
constant-temperature (NPT) ensembles. The Berendsen 
thermostat coupling was used to maintain the system 
temperature and pressure. The Particle Mesh Ewald 
(PME) method with a cut-off value of 5.0 Å was used to 
compute long-range interactions. The system’s stability 
was evaluated by analysing the root mean square 
deviation (RMSD) and root mean square fluctuation 
(RMSF) of the protein backbones. A production 
simulation run was carried out on each macromolecule 
for two nanoseconds (ns). Analysis of the stability of 
ligand-protein interactions was performed by calculating 
the RMSD and RMSF values of the atoms at the protein 
binding sites throughout the simulation. 

 

Toxicity prediction 

Toxicity prediction was performed using Toxtree 2.6.6. 
Three methods were used for the prediction: Cramer 
rules, Kroes TTC decision tree, and Benigni/Bossa 
rulebase (Patlewicz et al., 2008). 

 

Results 

The docking results of the best five compounds for each 
target can be seen in Tables II-VI. 

 

Table II: The docking results of the best five 
compounds against Histone Lysine Demethylase 1A 
(KDM1A) 

Code 
Free binding energy 

(kcal/mol) 
Inhibition 
constant 

Parnate 1 -9.76 69.72 nM 

Parnate 2 -7.92 1.58 µM 

Parnate 5 -8.34 768.51 nM 

Pyridine -9.15 195.97 nM 

Aminothiazole 1 -7.37 3.94 µM 
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Table III: The docking results of the best five 
compounds against Histone Lysine Demethylase 4A 
(KDM4A) 

Code 
Free binding energy 

(kcal/mol) 
Inhibition 
constant 

Parnate 1 -6.9 8.79 µM 

Pyridine -8.04 1.29 µM 

Namoline -7.16 5.64 µM 

Benzohydrazide -7.03 7.06 µM 

Parnate 14 -6.74 11.55 µM 

 

Table IV: The docking results of the best five 
compounds against Histone Lysine Demethylase 4C 
(KDM4C) 

Code 
Free binding energy 

(kcal/mol) 
Inhibition 
constant 

Parnate 3 -6.52 16.58 µM 

Parnate  11 -6.51 16.57 µM 

Pyridine -7.15 5.73 µM 

Parnate 8 -6.37 21.45 µM 

Parnate 14 -6.52 16.74 µM 

 

Table V: The docking results of the best five 
compounds against Histone Lysine Demethylase 4E 
(KDM4E) 

Code 
Free binding energy 

(kcal/mol) 
Inhibition 
constant 

Parnate 9 -6.55 15.86 µM 

Parnate 10 -6.07 35.83 µM 

Parnate 11 -6.8 10.36 µM 

Namoline -6.67 12.98 µM 

Parnate 14 -6.1 33.98 µM 

 

Table VI: The docking results of the best five 
compounds against Histone Lysine Demethylase 5B 
(KDM5B) 

Code 
Free binding energy 

(kcal/mol) 
Inhibition 
constant  

Parnate 11 -7.07 6.57 µM  

Pyridine -8.24 912.30 nM  

Benzohydrazide -6.73 11.75 µM  

Parnate 13 -6.75 11.24 µM  

Parnate 14 -6.71 12.12 µM  

 

The RMSD and RMSF curves of the best five ligands for 
each target can be seen in Figures 1-5. 

The toxicity prediction of 20 compounds of 
aminothiazole, benzohydrazide, namoline, pyridine, 
and parnate derivatives can be seen in Table VII. 

 

 

 

Figure 1: RMSD and RMSF curves of the KDM1A sole 
protein and in complex with ligand parnate 1, 

parnate 2, parnate 5, pyridine, and aminothiazole 1 

 

 

  Figure 2: RMSD and RMSF curves of the KDM4A sole 
protein and in complex with ligand parnate 1, 

pyridine, namoline, benzohydrazide, and parnate 14 

 

 

  Figure 3: RMSD and RMSF curves of the KDM4C sole 
protein and in complex with ligand parnate 3, 

parnate 11, pyridine, parnate 8, and parnate 14 
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  Figure 4: RMSD and RMSF curves of the KDM4E sole 
protein and in complex with ligand parnate 9, 

parnate 10, parnate 11, namoline, and parnate 14 

 

 

  Figure 5: RMSD and RMSF curves of the KDM5B sole 
protein and in complex with ligand parnate 11, 

pyridine, benzohydrazide, parnate 13, and parnate 14 

 

Table VII: The toxicity prediction of 20 aminothiazole, 
benzohydrazide, namoline, pyridine, and parnate 
derivatives 

Code 

Toxicity 

Cramer rules Kroes TTC 
Benigni / 

Bossa 
PARNATE 1 High (Class III) No Negative 
PARNATE 2 High (Class III) No Negative 
PARNATE 3 High (Class III) No Negative 
PARNATE 4 High (Class III) No Negative 
PARNATE 5 High (Class III) No Negative 
PARNATE 6 High (Class III) No Negative 
PARNATE 7 High (Class III) No Negative 
PARNATE 8 High (Class III) No Negative 
PARNATE 9 High (Class III) No Negative 
PARNATE 10 High (Class III) No Negative 
PARNATE 11 High (Class III) No Negative 
PARNATE 12 High (Class III) No Negative 
PYRIDINE High (Class III) No Negative 
AMINOTIAZ
OL 

High (Class III) No Negative 

NAMOLINE High (Class III) No Negative 
BENZOHYDR
AZIDE 

High (Class III) No Negative 

AMINOTHIA
ZOLE 1 

High (Class III) No Negative 

AMINOTHIA
ZOLE 2 

High (Class III) No Negative 

PARNATE 13 High (Class III) No Negative 
PARNATE 14 High (Class III) No Negative 

Discussion 

From the docking results of the test compounds against 
each target, the top five best test compounds were 
obtained for each target based on the Free Energy of 
Binding (∆G) and inhibition constant. The lower the ∆G 
value, the more stable the ligand-receptor binding will 
be and the greater the ability of a ligand to interact with 
the enzyme. 

Based on the docking of test compounds with Histone 
Lysine Demethylase 1A (KDM1A), the top five 
compounds were obtained; namely compounds with 
codes parnate 1, parnate 2, parnate 5, pyridine, and 
aminothiazole 1 as shown in Table II. The compound N-
(4-(4-(2-aminocyclopropyl)phenoxy)-1-(benzylamino)-
1-oxobutan-2-yl)benzamide (code Parnate 1) had the 
most negative ∆G, indicating the best interaction. The 
data in Table III showed that compounds with codes 
parnate 1, pyridine, namoline, benzohydrazide, and 
parnate 14 were the top five compounds against 
KDM4A, with (R)-4-(4-isocyanophenyl)-5-(pyrrolidin-3-
ylmethoxy)-2-p-tolylpyridine (code Pyridine) having the 
best interaction. Table IV showed that compounds with 
codes parnate 3, parnate 11, pyridine, parnate 8, and 
parnate 14 were the top five compounds against 
KDM4C, with (R)-4-(4-isocyanophenyl)-5-(pyrrolidin-3-
ylmethoxy)-2-p-tolylpyridine (code Pyridine) having the 
best interaction. Table V showed that compounds with 
codes parnate 9, parnate 10, parnate 11, namoline, and 
parnate 14 were the top five compounds against KDM4E, 
with 2-(2-(benzyloxy)-3-fluorophenyl)cyclopropanamine 
(code Parnate 8) having the best interaction. Moreover, 
Table VI showed that compounds with codes parnate 
11, pyridine, benzohydrazide, parnate 13, and parnate 
14 were the top five compounds against KDM5B, (R)-4-
(4-isocyanophenyl)-5-(pyrrolidin-3-ylmethoxy)-2-p-
tolylpyridine (code Pyridine) having the best 
interaction.  

The docking results of all test compounds to each target 
have negative free binding energy. This indicates that 
the binding between ligand and receptor occurs 
spontaneously. 

The MD simulation results obtained the Root Mean 
Square Deviation (RMSD) and Root Mean Square 
Fluctuation (RMSF) curves of each of the top five 
compounds against each target, as shown in Figures 1-
5. The RMSD curve in Figures 1-5 showed that the test 
compounds with the most stable binding to their 
receptors are found on the KDM1A receptor. All of the 
five ligands were able to stabilise the protein in general, 
marked by lower RMSD values compared to the lone 
protein. While for the other KDM receptors, there were 
still test compounds with higher RMSD values than the 
lone protein. 
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RMSD is a common metric used in MD simulations to 
evaluate the stability and similarity of protein 
structures over time. It is a measure of the average 
distance between the atoms of two protein structures, 
which are typically compared to each other over a time 
frame. During an MD simulation, the protein structure 
fluctuates and changes shape due to thermal motions 
and interactions with the solvent molecules. To 
quantify these changes, the MD trajectory is compared 
to an initial or reference structure, typically the crystal 
structure or the minimized starting structure. The 
RMSD is calculated as the square root of the average of 
the squared distances between the atoms of the two 
structures. A low RMSD value indicates that the protein 
structure is stable and has not undergone significant 
conformational changes during the simulation. A high 
RMSD value indicates that the protein structure has 
undergone significant structural changes, such as 
unfolding or large-scale rearrangements.  

From the RMSF curve in Figures 1-5, it could be 
observed that all amino acid residues in each receptor 
that interact with ligands were predicted to be stable 
due to the low fluctuation. 

RMSF is a measure of the deviation of atomic positions 
from their average position over the course of a MD 
simulation. RMSF is calculated for each residue that 
makes up the protein by observing the extent of the 
fluctuation of each residue's movement during the 
simulation. The RMSF value describes the 
conformational shift of each amino acid residue that 
gives protein flexibility. It is often used to assess the 
flexibility and mobility of different parts of a protein or 
other biomolecule. During a MD simulation, atoms 
move around due to thermal fluctuations, causing the 
molecule to undergo conformational changes. RMSF 
can be calculated by measuring the deviation of each 
atom's position from the average position over the 
course of the simulation. RMSF values are typically 
plotted as a function of residue number, allowing 
researchers to identify regions of the molecule that are 
particularly flexible or rigid. High RMSF values indicate 
more mobile regions, while low RMSF values indicate 
more stable regions. RMSF analysis can be particularly 
useful in identifying binding sites or regions that 
undergo conformational changes upon binding to a 
ligand or other molecule. 

The toxicity prediction aims to determine the potential 
of a compound as a poison that can cause adverse 
effects on the body's systems. The toxicity prediction 
results can be obtained using the ToxTree software. 
Three parameters are used: Cramer Rules, Kroes TTC 
decision tree, and Benigni Bossa Rulebase. 

Based on the toxicity prediction results using the 
Cramer Rules of 20 test compounds, all tested 

compounds fall into class III (High). This means that 
these compounds have the highest level of toxicity 
based on the parameters in the Cramer Rules. The 
presence of aromatic groups in the test compounds 
caused all of them to be included in the III (High Class) 
(Cramer et al., 1978). 

The Kroes TTC decision tree aims to determine the risk 
of exposure to the test compounds (Kroes et al., 2004). 
Based on the toxicity prediction results using Kroes TTC 
decision tree for the 20 test compounds, all tested 
compounds are estimated not to threaten health. 

The Benigni Bossa Rulebase is used to determine the 
risk of mutagenesis and carcinogenesis of the test 
compounds (Benigni et al., 2007). Based on the toxicity 
prediction results with the Benigni Bossa Rulebase of 
the 20 test compounds, all test compounds are not at 
risk of causing carcinogenesis, both genotoxic 
carcinogens and non-genotoxic carcinogens. 

 

Conclusion 

Based on the research results, it can be concluded that 
compounds with the codes aminothiazole, pyridine, 
parnate 1, parnate 2, and parnate 5 can serve as 
inhibitors of histone lysine demethylase enzymes on 
the KDM1A receptor and are stable when bound to the 
receptor. 
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