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Introduction 

Diabetes is a chronic disease characterised by high 
blood sugar levels. Glucose that accumulates in the 
blood without being properly absorbed by the body's 
cells can cause various organ problems. If diabetes is 
not properly controlled, various complications can 
occur that endanger the life of the affected person 
(DiPiro et al., 2005). Data from the International 
Diabetes Federation showed that the number of 
diabetes mellitus (DM) patients globally in 2015 
reached 415 million and is expected to continue to 
increase in 2040 to around 642 million (International 
Diabetes Federation, 2015). 

Diabetes mellitus is one of the main causes of morbidity 
in COVID-19 patients worldwide (Guo et al., 2020). 
Several studies have shown a higher susceptibility to 
several infectious diseases in people with diabetes. A 

retrospective study in Wuhan, China, showed that out 
of 41% individuals treated for COVID-19, 32% had pre-
existing health conditions, with diabetes present in 20% 
(Guan et al., 2020). High blood plasma glucose level is 
one of the factors that lowers the body's immune 
system against infection. Therefore, patients with co-
morbid diabetes are at high risk of developing COVID-
19 and have a poorer prognosis (Guan et al., 2020). In 
COVID-19 patients with comorbid diabetes mellitus, it 
was found that neutrophil levels and erythrocyte 
sedimentation rate (ESR) were significantly higher than 
patients without diabetes. Meanwhile, the levels of 
lymphocytes, red blood cells, and haemoglobin in 
patients with co-morbid diabetes were significantly 
lower than in those without diabetes (Guo et al., 2020). 
This implies that patients with diabetes who contract 
COVID-19 may face a higher likelihood of experiencing 
an excessive and unregulated inflammatory reaction 
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Abstract 
Background: Diabetes is a chronic disease characterised by high blood sugar levels. 
Glucose that accumulates in the blood without being properly absorbed by the body's 
cells can cause various organ problems. If diabetes is not properly controlled, various 
complications can occur that endanger the life of the affected person.    Objective: To 
find bioactive peptides that have the potential to inhibit di-peptidyl peptidase 4 (DPP-4) 
enzyme as anti-diabetes drug candidates.    Method: This research was carried out using 
pharmacophore-based virtual screening.    Result:  The validation of the pharmacophore-
based virtual screening method showed that model III, which had five pharmacophore 
features consisting of three Pi interactions, one hydrogen bond donor, and three 
hydrogen acceptors, was the best pharmacophore model with the values of AUC 0.59; EF 
1.2; Se 0.69; Sp 0.94; ACC 0.84; Ya 0.06; and GH 0.2. The screening of the 168,400 short-
chain peptides using validated pharmacophore model III gave 51 tetrapeptides as the hits 
compounds with a pharmacophore fit score of more than 50.0%.    Conclusion: In total, 
51 tetrapeptides were enlisted as potential as anti-diabetes mellitus drug candidates. 
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and a state of heightened blood coagulability, 
potentially leading to a more severe prognosis for 
COVID-19 (Guo et al., 2020). 

Dipeptidyl peptidase 4 (DPP-4) inhibitors, used in 
lowering high blood sugar, also prevent the 
degradation of active incretin hormones like glucagon-
like peptide 1 (GLP-1) (Berger et al., 2018). This leads to 
higher levels of active incretin hormones in the blood, 
thereby enhancing glycemic regulation mainly by 
stimulating insulin release in response to glucose and 
suppressing glucagon secretion from pancreatic alpha 
and beta cells. The pharmacological blocking of DPP-4 
has shown effectiveness in treating type 2 diabetes, 
with various structurally different DPP-4 inhibitors 
being used in therapy. The most commonly used are 
sitagliptin, vildagliptin, saxagliptin, linagliptin, and 
alogliptin. (Berger et al., 2018). 

Current treatments for type 2 diabetes mellitus (T2DM) 
have various limitations, including suboptimal control 
of postprandial hyperglycemia, increased risk of 
hypoglycemia, weight gain, gastrointestinal side 
effects, and oedema (American Diabetes Association, 
2018). Classes of drugs that are widely used to treat 
type 2 diabetes include metformin, sulfonylureas (SU), 
thiazolidinediones (TZD), and alpha-glucosidase 
inhibitors (AGI). Metformin is the front-line drug for 
treating type 2 diabetes, while the next line is SU, TZD, 
and dipeptidyl peptidase-IV (DPP-4) inhibitors. DPP-4 
inhibitors generally have a high tolerability and a low 
risk of hypoglycemia (American Diabetes Association, 
2018). Adverse effects of DPP-4 inhibitors were 
generally absent for major adverse cardiac events 
(MACE), nonfatal MI, or stroke (Ou et al., 2016). Several 
studies have shown that DPP-4 inhibitors are also not 
associated with an increased risk of pancreatic cancer 
(Zhang et al., 2017; Pinto et al., 2018).  

In recent years, many DPP-4 inhibitors have been 
produced, which are used in treating type 2 diabetes 
mellitus. However, there is still little research to 
produce DPP-4 inhibitors from the peptide group. As 
one of the macronutrient components, peptides have 
the advantage of being easily accepted by the body and 
having minimal side effects. So, developing active 
peptide inhibitors of DPP-4 as antidiabetic drug 
candidates is necessary. Previous studies have found 
DPP-4 inhibitors classified based on their interaction 
with the residue of the DPP-4 catalytic site: (a) covalent 
inhibitors and (b) noncovalent inhibitors. Sitagliptin, 
alogliptin, and linagliptin do not form covalent 
interactions with catalytic residues (Kim et al., 2005; 
Thomas et al., 2008), while vildagliptin and saxagliptin 
covalently inhibit DPP-4 in a slow and reversible two-
step process (Liu, Hu, & Liu, 2012). At the same time, 
Linagliptin can reduce infarct size after myocardial 

ischemia. Immunohistological findings support the 
hypothesis that inhibition of DPP-4 through reduced 
factor-1 alpha-derived stromal cell division may lead to 
increased recruitment of CXCR-4+ circulating 
progenitor cells (Hocher et al., 2013). 

Virtual screening methods, both pharmacophore 
modelling and molecular docking, have gained 
attention in quickly identifying drug guide compounds 
with relatively lower economic investment costs (Niu et 
al., 2013; Fells et al., 2014; Joung et al., 2014; Muttaqin 
et al., 2020). Virtual screening is an advanced 
computational technique used to sift through a 
database of chemical compounds to pinpoint potential 
drug candidates. This method is advantageous in 
lowering research expenses and accelerating the 
research process compared to traditional 
pharmacological screening methods (Tang & Marshall, 
2011). The current study aimed to find bioactive 
peptides that have the potential to inhibit the DPP-4 
enzyme as an antidiabetic drug candidate using 
pharmacophore-based virtual screening. 

 

Methods 

Hardware 

This study was carried out using a computer unit with 
the specification of Windows 10 Pro 64-bit operating 
system, AMD Ryzen 9 3900X CPU @ 3.80 GHz 12 (CPUs) 
processor, 32 GB of RAM DDR4 memory, and 11 GB 
GDDR5X dedicated VGA. 

 

Active and decoy set compounds 

For validating the virtual screening process, 135 active 
compounds were sourced as positive controls from the 
website https://www.ebi.ac.uk/chembl/, with IC50 
values ranging from 0 to 4000 nM. Additionally, 2,500 
decoy compounds, serving as negative controls, were 
acquired from https://dude.docking.org.  
 

Small peptides database 

Exactly 168,400 short-chain peptides were obtained 
from the Data of small peptides in SMILES and three-
dimensional formats for virtual screening campaigns 
(Prasasty & Istyastono, 2019). 
 

Pharmacophore-based virtual screening 

The pharmacophore-based virtual screening was 
carried out using the LigandScout 4.3 software. Five 
statins, including alogliptin, linagliptin, saxagliptin, 
sitagliptin, and vildagliptin, were used to build the 
pharmacophore models. The validation was carried out 
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by applying the active set compound and decoy set 
compound against the overall pharmacophore features 
of the pharmacophore models, which will then be used 
as a guiding feature for selecting compounds from a 
combination of one to four peptides. The parameters 
measured are the resulting ROC curve showing an Area 
Under Curve (AUC) value of more than 0.5 and an 
Enrichment Factor (EF) value of more than 1.0 (Wolber 
& Langer, 2005), and also other classic enrichment 
validation parameters such as selectivity (Se),  
specificity (Sp), accuracy (ACC), Yield of actives (Ya), dan 
Goodness of Hit-list (GH) values (Triballeau et al., 2005; 

Wolber & Langer, 2005). The validated pharmacophore 
models were used for the virtual screening of the short-
chain peptides. 

 

Results 

Five DPP-4 inhibitors from the statin group (alogliptin, 
linagliptin, saxagliptin, sitagliptin, and vildagliptin) were 
used to create model pharmacophores, resulting in ten 
models for virtual screening, as can be seen in Figure 1. 

 

 

Figure 1: The pharmacophore models obtained from five statin DPP-4 inhibitors 

 

Validation was carried out on the ten pharmacophore 
models obtained from pharmacophore modelling using 
the active and the decoy set to obtain receiver 
operating characteristic (ROC) curves (Table I). 

Pharmacophore model III has a total of seven 
pharmacophore features, consisting of three hydrogen 
bond acceptors (HBA), one hydrogen bond donor 
(HBD), and three pi-alkyls (Figure 2). 

 

Table I: Validation of pharmacophore models 

Model 
Pharmacophore feature(s) 

AUC EF Se Sp Acc Ya GH 
HBA HBD Pi-Alkyl 

1 3 1 3 0.56 1.0 0.54 0.94 0.87 0.05 0.16 

2 3 1 3 0.55 1.0 0.49 0.94 0.92 0.05 0.15 

3 3 1 3 0.59 1.2 0.69 0.94 0.84 0.06 0.2 

4 3 1 3 10.54 1.0 0.48 0.94 0.94 0.05 0.15 

5 4 1 3 0.53 1.0 0.49 0.94 0.89 0.05 0.15 

6 4 1 3 0.52 1.0 0.51 0.94 0.84 0.05 0.15 

7 4 1 3 0.54 1.0 0.52 0.94 0.85 0.05 0.16 

8 4 1 3 0.57 1.1 0.61 0.94 0.83 0.06 0.18 

9 4 1 3 0.57 1.1 0.61 0.94 0.83 0.05 0.18 

10 4 1 3 0.54 1.0 0.52 0.94 0.85 0.05 0.16 
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Figure 2: (a) 2D and 3D validated pharmacophore features and (b) ROC curve of pharmacophore model 3 

 

The virtual screening utilised the pharmacophore 
model III as the validated pharmacophore model, 
resulting in 51 tetrapeptides as the hits compounds 

with a pharmacophore fit score of more than 50.0% 
(Table II). 

 

Table II: Virtual screening results using validated pharmacophore model 3 

No Name Pharmacophore fit score (%) 

1 L-alanyl-L-histidyl-L-isoleucyl-L-arginine 52.48 

2 L-alanyl-L-histidyl-L-threonyl-L-arginine 52.39 

3 L-alanyl-L-glutamyl-L-prolyl-L-glutamic acid 52.38 

4 N-(L-alanyl)-N-methylglycyl-L-prolyl-L-proline 52.38 

5 L-seryl-L-arginyl-L-valyl-L-methionine 52.30 

6 L-alanyl-L-histidyl-L-prolyl-L-threonine 52.30 

7 L-seryl-L-arginyl-L-isoleucyl-L-methionine 52.20 

8 L-alanyl-L-aspartyl-L-arginyl-L-leucine 52.19 

9 L-alanylglycyl-L-leucyl-L-arginine 52.18 

10 L-seryl-L-arginyl-L-histidyl-L-asparagine 52.16 

11 L-alanyl-L-alanyl-L-tyrosyl-L-proline 52.15 

12 L-seryl-L-arginyl-L-prolyl-L-glutamic acid 52.14 

13 L-alanyl-L-cysteinyl-L-tyrosyl-L-arginine 52.10 

14 L-alanyl-L-aspartyl-L-cysteinyl-L-proline 52.08 

15 
(S)-3-((S)-2-aminopropanamido)-4-(((S)-1-(((R)-1-carboxy-2-
mercaptoethyl)amino)-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl)amino)-4-
oxobutanoic acid 

51.99 

16 
(S)-4-(2-((S)-2-aminopropanamido)acetamido)-5-(((S)-1-carboxy-3-
(methylthio)propyl)amino)-5-oxopentanoic acid 

51.99 

17 
(S)-4-((S)-2-aminopropanamido)-5-(((2S,3R)-1-(((S)-1-carboxy-3-
methylbutyl)amino)-3-hydroxy-1-oxobutan-2-yl)amino)-5-oxopentanoic 
acid 

51.94 

18 
(S)-4-((S)-2-aminopropanamido)-5-(((S)-3-carboxy-1-(((S)-1-carboxy-2-
methylpropyl)amino)-1-oxopropan-2-yl)amino)-5-oxopentanoic acid 

51.88 

19 L-alanyl-L-aspartyl-L-threonyl-L-proline 51.74 

20 L-alanyl-L-histidyl-L-threonyl-L-isoleucine 51.72 

21 L-alanyl-L-cysteinyl-L-threonyl-L-lysine 51.72 
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No Name Pharmacophore fit score (%) 

22 L-alanyl-L-aspartyl-L-histidyl-L-glutamine 51.66 

23 L-alanylglycyl-L-isoleucyl-L-glutamic acid 51.66 

24 L-alanyl-L-cysteinyl-L-seryl-L-leucine 51.45 

25 L-alanylglycyl-L-leucyl-L-glutamine 51.38 

26 L-alanyl-L-histidyl-L-threonylglycine 51.38 

27 L-alanyl-L-cysteinyl-L-seryl-L-lysine 51.35 

28 L-alanylglycyl-L-leucyl-L-histidine 51.33 

29 L-alanylglycyl-L-aspartyl-L-glutamine 51.33 

30 L-alanyl-L-histidyl-L-histidyl-L-phenylalanine 51.30 

31 L-alanylglycyl-L-lysyl-L-glutamine 51.30 

32 L-alanylglycyl-L-tyrosyl-L-serine 51.29 

33 L-alanylglycyl-L-leucyl-L-glutamic acid 51.29 

34 L-alanyl-L-aspartyl-L-cysteinyl-L-asparagine 51.28 

35 L-alanyl-L-isoleucyl-L-cysteinyl-L-serine 51.26 

36 L-alanyl-L-phenylalanyl-L-leucyl-L-arginine 51.25 

37 L-alanyl-L-histidyl-L-valyl-L-leucine 51.25 

38 L-alanyl-L-histidyl-L-threonyl-L-phenylalanine 51.24 

39 L-alanyl-L-histidyl-L-isoleucyl-L-histidine 51.23 

40 L-alanyl-L-alanyl-L-tyrosyl-L-methionine 51.22 

41 L-alanyl-L-cysteinyl-L-histidyl-L-asparagine 51.22 

42 L-alanylglycyl-L-cysteinyl-L-methionine 51.20 

43 L-alanyl-L-cysteinyl-L-tyrosyl-L-lysine 51.16 

44 L-alanyl-L-alanyl-L-arginyl-L-cysteine 51.15 

45 L-alanyl-L-aspartyl-L-arginyl-L-lysine 51.13 

46 L-seryl-L-arginyl-L-prolyl-L-histidine 51.13 

47 L-alanyl-L-histidyl-L-valyl-L-proline 51.10 

48 L-alanyl-L-cysteinyl-L-tyrosyl-L-methionine 51.02 

49 L-alanyl-L-cysteinyl-L-seryl-L-isoleucine 50.98 

50 L-seryl-L-arginyl-L-valyl-L-serine 50.96 

51 L-alanylglycyl-L-phenylalanyl-L-glutamic acid 50.85 

 

Discussion 

Virtual screening is a logical extension based on 
searching a three-dimensional (3D) pharmacophore 
database or molecular aggregation, which can 
automatically evaluate large aggregated databases 
(Chen et al., 2009). First, pharmacophore models were 
created from five DPP-4 inhibitors of the statin group, 
which have been widely used as antidiabetics. The ten 
pharmacophore models produced were validated using 
135 active compounds and 2500 decoy compounds. 

Pharmacophore model III gave the highest area under 
the ROC curve (AUC) and enrichment factor (EF) values 
of 0.59% and 1.2, respectively. While the sensitivity 
(Se), specificity (Sp), accuracy (Acc), Yield of actives 
(Ya), and goodness of hit-list (GH) values were 0.69, 
0.94, 0.84, 0.06, and 0.2, respectively. A good AUC 
value is 0.5 or higher, while a good EF value is 0.1 or 

greater. Optimal Se and Sp values are equal to one. The 
Ya and GH values are more desirable when higher 
(Braga & Andrade, 2013). This pharmacophore model 
showed significant potential in predicting effective 
molecular interactions, strengthened by high Se and Sp 
values, indicating good accuracy in identifying active and 
non-active molecules. The resulting accuracy (Acc) 
reflects the model's ability to correct classification, while 
a low Ya value indicates a limited positive balance. In the 
context of GH, a measure of geometric harmony, the 
obtained values indicate room for improvement in 
molecular shape matching. This model's combination of 
HBA, HBD, and pi-alkyl features contributes to 
interactions with specific biological targets, reflected by 
the aforementioned values. Therefore, pharmacophore 
model 3 was used as the virtual pharmacophore model 
for screening. 
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The virtual screening utilised the pharmacophore 
model 3 as the validated pharmacophore model, 
resulting in 51 tetrapeptides as the hits compounds 
with a pharmacophore fit score of more than 50.0%. 
This indicates that these compounds have a fairly high 
affinity for the pharmacophore model and are potential 
candidates for further drug development.  

These hit compounds can be further selected based on 
their pharmacophore suitability scores to determine 
the most promising anti-diabetes drug candidates. 
Compounds with higher scores typically show better 
interactions in pharmacophore models and a greater 
likelihood of functioning effectively as therapeutic 
agents. Therefore, it is important to analyse these 
tetrapeptides' chemical and biological properties in 
depth to ensure that they match virtually any 
pharmacophore model and are effective and safe when 
tested in more complex biological systems. 

 

Conclusion 

It was concluded that the 51 tetrapeptides obtained 
from the pharmacophore virtual screening were 
potential as anti-diabetes mellitus drug candidates. 
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