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Introduction  

Metabolic syndrome is a group of metabolic disorders 
that increase the risk of heart disease and type 2 
diabetes (NIH, 2022). Its incidence is three times more 
common than diabetes, which has a global prevalence 
of 10.5 percent (IDF, 2021). Adipose tissue is an 
endocrine organ that secretes many pro-inflammatory 
and anti-inflammatory adipokines. The role of 
adipokines dysregulation in the development of 
metabolic diseases. Several previous studies have 
shown that metabolic syndrome is characterised by 
increased leptin in parallel to decreased adiponectin 
concentrations. Therefore, understanding the balance 

mechanism between pro-inflammatory and anti-
inflammatory adipokines is a strategy for preventing 
metabolic diseases. (Oh et al., 2017; Ebert et al., 2018). 
This study implicates adipokines in developing 
metabolic diseases with herbal treatment as a potential 
new therapeutic strategy. 

Garcinia mangostana contains various bioactive 
compounds, with α, β, and γ-mangostin being the most 
abundant, alongside other xanthones are represented 
by mangostanin, mangostanol, mangostenol, 
mangostinone (Ansori et al., 2020; Rohman et al., 2020; 
Rizaldy et al., 2021). The most prominent flavonoids, 
isolated from hydroalcohols Orthosiphon stamineus 
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Abstract 
Background: Metabolic syndrome is a group of metabolic disorders due to dysfunctional 
adipose tissue. Adipose tissue is an endocrine organ that secretes many pro-
inflammatory and anti-inflammatory adipokines. Garcinia mangostana and Orthosiphon 
stamineus have demonstrated various pharmacological effects, including antidiabetic, 
anti-dyslipidemia, antiobesity, antioxidant, and anti-inflammatory properties.    
Objective: This study aimed to analyse the interaction of phytochemical compounds from 
Garcinia mangostana and Orthosiphon stamineus in decreasing levels of pro-
inflammatory adipokines while increasing levels of anti-inflammatory adipokines.    
Method: This research is an in silico study of phytochemical compounds from Garcinia 
mangostana, and Orthosiphon stamineus retrieved from PubChem and HMDB. 
Adipokines as target proteins were obtained from RCSB and UniProt.    Result: 
Mangostanin, mangostanol, and mangostinone from Garcinia mangostana, as well as 
ladanein, salveginin, sinensetin, and rosmarinic acid from Orthosiphon stamineus, 
exhibited stable molecular complexes compared to other compounds.    Conclusion: 
Phytochemical compounds from Garcinia mangostana and Orthosiphon stamineus show 
potential as candidates for metabolic syndrome drugs by restoring adipokine levels. 
However, further research is still needed. 
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extract, mostly represented by 3'-H-TMF, eupatorine, 
ladanein, salvegenin, sinensetin, caffeic acid and 
rosmarinic acid (Ameer et al., 2012; Li et al., 2021a). 
They have demonstrated various pharmacological 
effects, including antidiabetic, antidyslipidemia, 
antiobesity, antioxidant, and anti-inflammatory 
properties (Ameer et al., 2012; Ansori et al., 2020). 
α‑mangostin has been reported to improve glucose 
tolerance, insulin sensitivity, and adiponectin levels 
(John et al., 2022). Orthosiphon stamineus has been 
found to reduce appetite through the leptin signalling 
pathway (Son, 2011).  

 

Methods 

Ligand retrieval and Protein preparation 

These ligand compounds were retrieved from the 
PubChem dataset (https://pubchem.ncbi.nlm.nih.gov/) 
and HMDB (https://hmdb.ca) (Kim et al., 2015). The 
ligand molecules, comprising phytochemical 
compounds from Garcinia mangostana (α-mangostin 
(CID=HMDB0035796), β-mangostin 
(CID=HMDB0036596), γ-mangostin (CID= 
HMDB0035795), mangostanin (CID=5495929), 
mangostanol (CID=10048103), mangostenol 
(CID=5495927), and mangostinone (CID= 
HMDB0041292)) and Orthosiphon stamineus (3'-H-TMF 
(CID=7020615), eupatorine (CID=97214), ladanein 

(CID=3084066), sinensetin (CID=145659), salveginin 
(CID=HMDB0128577), caffeic acid (CID=689043), and 
rosmarinic acid (CID=5281792)). Adipokines as target 
proteins were obtained from the UniProtKB database 
(https://www.uniprot.org/) and PDB RCSB 
(https://rcsb.org/). Water molecules and native ligands 
in the target proteins were removed using BIOVIA 
Discovery Studio software version 2020 (Yang et al., 
2022).  
 

Molecular docking 

Molecular docking was performed using PyRx software 
version 0.9.9. $Id: LICENSE.txt 112 2012-02-13 
22:33:36Z sarkiss $. Copyright (c) [2008-Forever], Sargis 
Dallakyan and individual contributors. the BIOVIA 
Discovery Studio 2020 software (Dassault Systems 
France) was employed to identify chemical interactions 
visualised using ligand-target proteins' 3D and 2D 
structure complexes (Yang et al., 2022).  

 

Result 

Molecular docking, a virtual simulation of ligand and 
target protein interactions. The stable molecular 
complexes show the most negative binding affinity 
values (Mohanty & Mohanty, 2023). Docking analysis of 
ligand compounds from Garcinia mangostana and 
Orthosiphon stamineus are described in Table I. 

 

Table I: Docking analysis of phytochemical compounds from Garcinia mangostana and Orthosiphon stamineus.  

Source 
Ligand 

compound 

Target protein 

Binding affinity (kcal/mol) 

A B C D E F G H I 

Garcinia 
mangostana 

1 -8.0 -6.7 -8.1 -7.1 -8.1 -6.1 -7.1 -7.6 -8.1 

2 -7.5 -6.9 -8.1 -6.6 -8.2 -5.9 -7.1 -7.4 -8.3 

3 -8.0 -6.8 -7.8 -7.2 -8.6 -7.2 -7.2 -8.2 -8.7 

4 -8.4 -7.4 -8.0 -7.4 -9.3 -6.3 -8.1 -8.7 -10.4 

5 -8.6 -6.9 -8.0 -7.7 -8.4 -6.6 -7.9 -8.4 -9.1 

6 -7.8 -6.4 -8.2 -7.0 -8.2 -7.0 -7.4 -7.5 -8.5 

7 -8.0 -6.9 -9.5 -6.8 -8.7 -9.2 -6.8 -8.0 -9.9 

Orthosiphon 
stamineus 

8 -6.8 -6.9 -7.5 -6.8 -8.0 -6.5 -6.8 -7.1 -8.9 

9 -6.8 -6.9 -8.8 -6.8 -7.9 -5.9 -7.0 -7.4 -8.9 

10 -7.3 -7.3 -6.2 -7.0 -8.1 -7.8 -7.1 -7.3 -9.2 

11 -6.8 -7.0 -7.6 -6.9 -7.7 -5.8 -7.0 -7.1 -9.7 

12 -6.6 -6.9 -9.1 -6.7 -7.7 -5.9 -6.7 -7.0 -8.4 

13 -6.4 -5.5 -6.5 -5.5 -6.0 -6.2 -5.6 -5.8 -8.5 

14 -8.6 -6.8 -7.8 -6.2 -7.5 -8.4 -6.7 -7.6 -8.8 

Ligand compounds list: 1 = α-mangostin, 2 = β-mangostin, 3 = γ-mangostin, 4 = mangostanin, 5 = mangostanol, 6 = mangostenol, 7 = mangostinone; 8 = 3'-H-
TMF (3'-hydroxy-5,6,7,4'-tetramethoxyflavone), 9 = eupatorine, 10 = ladanein, 11 = salveginin, 12 = sinensetin, 13 = caffeic acid, 14 = rosmarinic acid.  
Target proteins list: A = adiponectin, B = omentin1, C = SFRP5 (secreted frizzled-related protein); D = ASP (acylation-stimulating protein), E = chemerin, F = 
FABP4 (fatty acid binding protein), G = leptin, H = vaspin, I = visfatin. 

https://hmdb.ca/
https://pubchem.ncbi.nlm.nih.gov/compound/5495929
https://pubchem.ncbi.nlm.nih.gov/compound/10048103
https://pubchem.ncbi.nlm.nih.gov/compound/5495927
https://pubchem.ncbi.nlm.nih.gov/compound/7020615
https://pubchem.ncbi.nlm.nih.gov/compound/97214
https://pubchem.ncbi.nlm.nih.gov/compound/3084066
https://pubchem.ncbi.nlm.nih.gov/compound/689043
https://pubchem.ncbi.nlm.nih.gov/compound/5281792
https://rcsb.org/
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Mangostanol(5) and rosmarinic acid(14) both show the 
most negative binding affinity values for adiponectin (-
8.6 kcal/mol). Omentin-1 showed a stable interaction 
with mangostanin(4) and ladanein(10) (-7.4 and -7.3 
kcal/mol). Mangostinone(7) and sinensetin(12) 
exhibited the most negative binding affinity values (-9.5 
and -9.1 kcal/mol), suggesting their potential to 
increase SFRP5 levels. The most negative binding 
affinity values for ASP are mangostanol(5) and 
ladanein(10) (-7.7 and -7.0 kcal/ mol). Chemerin 
showed a stable interaction with mangostanin(4) and 
ladanein(10) (-9.3 and -8.1 kcal/mol). Mangostinone(7) 
and rosmarinic acid(14) have the most negative binding 
affinity values for FABP4 (-9.2 and -8.4 kcal/mol). The 
most negative binding affinity values for leptin were 

mangostanin(4) and ladanein(10) (-8.1 and -7.1 
kcal/mol). Vaspin showed a stable interaction with 
mangostanin(4) and rosmarinic acid(14) (-8.7 and -7.6 
kcal/mol). Visfatin is predicted to decrease in levels if it 
binds to mangostanin(4) and salveginin(11), which have 
the most negative binding affinity values (-10.4 and -9,7 
kcal/mol). 

The chemical interaction of selected ligand compounds 
and target proteins based on the most negative binding 
affinity values (from Table I) are described in Table II 
and Figure 1. The research results show that 
mangostanin, mangostanol, and mangostinone from 
Garcinia mangostana as well rosmarinic acid, ladanein, 
salveginin, and sinensetin from Orthosiphon stamineus. 

 

Table II: Chemical interaction of selected ligand compounds and target proteins  

Target 
protein 

Ligand 
compound 

Chemical interaction 

(A) Mangostanol (1): A:Tyr109, B:Leu239 (conventional); A:Leu239 (carbon-hydogen). 

(2): B:Val110 (alkyl); A:His241, A:His241, A:Tyr111, A:Val110, A:Val110, C:Tyr109, C:Tyr111 (pi-alkyl); C:His241 (pi-pi 
T- shaped). 

Rosmarinic acid (1): B:His241, B:Tyr111, B:Tyr111, C:His241, C:His241, C:His241, C:Leu239, C:Tyr111 (conventional). 

(2): A:Val110, C:Val110 (pi-alkyl); C:Tyr240 (pi-pi T-stacked). 

(4): A:Tyr111 (donor-donor).     

(B) Mangostanin (1): B:Gln67, B:Tyr134 (conventional); B:Gln67 (carbon-hydrogen). 

(2): B:Pro137, B:Pro137, B:Val64, B:Val64 (alkyl); B:Phe57, B:Pro137 (pi-alkyl). 

Ladanein (1): B:Glu87, B:Met90 (conventional); A:Thr257 (carbon-hydrogen). 

(2): A:Cys199, A:Cys259 (alkyl); B:Arg91, A:Trp200, (pi-alkyl); A:Trp200 (pi-pi stacked). 

(3): B:Asp89 (pi-anion). 

(C) Mangostinone (1): A:Glu187, A:Tyr307 (conventional). 

(2): A:Met139, A:Pro94, A:Pro94 (alkyl); A:Phe144, A:Phe144, A:Phe144, A:Tyr307 (pi-alkyl);  

       A:Phe144, A:Phe310, A:Trp 92 (pi-sigma); A:Tyr142 (pi-pi T-staped). 

(4): A:Tyr307 (donor-donor). 

Sinensetin (1): A:Gln196, A:Gln196 (conventional). 

(2): A:Ala280, A:Leu95, A:Met139, A:Met279 (alkyl); A:Phe144, A:Pro94, A:Pro94, A:Trp92, A:Tyr142, A:Tyr307  

       (pi-alkyl); A:Phe310 (pi-sigma); A:Phe144, A:Phe144, A:Tyr142 (pi-pi stacked). 

(D) Mangostanol (1): A:Arg704, A:Arg710 (conventional).  

(2): A:Cys707 (alkyl); A:Asn701 (pi-sigma). 

(3): A:Arg736, A:Arg736 (pi-cation). 

(4): A:Asn701 (donor-donor). 

Ladanein (1): A:Arg710 (conventional). 

(2): A:Arg735, A:Ala739 (alkyl); A:Ala739, A:Arg735, A:Arg736 (pi-alkyl); A:Thr732 (pi-sigma). 

(3): A:Arg736, A:Arg736 (pi-cation). 

(4): A:Phe705 (acceptor-acceptor). 

(E) Mangostanin (1): A:His95, A:Thr302 (conventional). 

(2): A:Ala305, A:Ile120, A:Leu119, A:Leu119, A:Leu298, A:Met123, A:Met123, A:Pro299 (alkyl);  

       A:Leu298, A:Phe88, A:Tyr103, A:Tyr276 (pi-alkyl); A:Tyr276 (pi-pi T-stacked). 

(3): A:Arg178 (pi-cation). 

Ladanein (1): A:Ser194, A:Tyr214 (conventional); A:Leu284 (carbon-hydrogen). 

(2): A:His286, A:Phe190, A:Tyr214 (pi-alkyl); A:His217 (pi-pi T- shaped). 

(4): A:Asp 210 (acceptor-acceptor). 

(F) Mangostinone (1): A:Ala76, A:Arg107 (conventional). 
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Target 
protein 

Ligand 
compound 

Chemical interaction 

(2): A:Ala34, A:Ala34, A:Ala76, A:Met21, A:Met21, A:Val24, A:Val26 (alkyl); A:Ile63, A:Phe17, A:Phe17, A:Tyr20 (pi-
alkyl).        

Rosmarinic  

acid 

(1): A:Arg79, A:Arg79, A:Arg107, A:Arg127 (conventional). 

(2): A:Ala34, A:Met21 (pi-alkyl); A:Ala76, A:Ile105 (pi-sigma); A:Phe17 (pi-pi stacked).  

(4): A:Tyr20 (donor-donor). 

(5): A:Cys118 (pi-sulfur). 

(G) Mangos 

tanin 

(1): A:Lys115, A:Thr71 (conventional); A:Ala112, A:Ser164 (carbon-hydrogen). 

(2): A:Leu72, A:Leu161, A:Met75, C:Ile24, C:Val110, C:Val110 (alkyl);  

       A:Ala112, A:Ala112, A:Ala112, A:Leu72, A:Leu72, A:Lys115, C:Phe113 (pi-alkyl); A:Leu72 (pi-sigma). 

(3): A:Lys115, A:Lys115 (pi-cation). 

Ladanein (1): A:Arg149, E:Gln84 (conventional); E:Gln84, E:Val81 (carbon-hydrogen). 

(2): A:Ile85, A:Val81, E:Ile85 (alkyl); A:Arg149, A:Arg149, A:Ile85 (pi-alkyl); A:Tyr82 (pi-pi stacked). 

(H) Mangos 

tanin 

(1): A:Gly413 (conventional); A:His312 (carbon-hydrogen). 

(2): B:Lys175, B:Lys175 (alkyl); A:Lys414, A:Lys414 (pi-alkyl). 

(3): A:Lys355 (pi-cation). 

Rosmarinic acid (1): A:Leu230, A:Lys232, A:Lys279, A:Lys388 (conventional); A:Pro389 (carbon-hydrogen).  

(2): A:Leu280, A:Lys232, A:Lys388, A:Pro389 (pi-alkyl); A:Phe229 (pi-pi T- shaped). 

(4): A:Leu280 (donor-donor); A:Asp276 (acceptor-acceptor). 

(I) Mangos 

tanin 

(1): A:Asp219, A:Ser241, A:Ser275 (conventional). 

(2): A:Ala244, A:Ala244, A:Pro273, A:Val242 (alkyl); A:Ala244, A:Ala379, A:His191, A:Ile309, A:Ile309, A:Ile351,  

       A:Ile351, A:Phe193, B:Tyr18, B:Tyr18, B:Tyr18, A:Tyr188, A:Val242, A:Val242 (pi-alkyl); A:Phe193 (pi-sigma). 

Salveginin (1): A:Arg311, A:His247, B:Arg392 (conventional). 

(2): A:Ala244 (alkyl); A:Ala244, A:His191, A:His247, A:Phe193, (pi-alkyl); A:Phe193, B:Tyr18 (pi-pi stacked). 

(3): A:Asp313 (pi-anion); A:Arg196, A:Arg196, A:Arg311 (pi-cation). 

Some ligand compounds have the same interactions with several residues, as indicated by the amino acid residues written in bold. The active site is shown with 
an underlined amino acid residue. Target proteins list: (A) = adiponectin, (B) = omentin1, (C) = SFRP5; (D) = ASP, (E) = chemerin, (F) = FABP4, (G) = leptin, (H) = 
vaspin, (I) = visfatin. Types of interactions list: (1) = hydrogen bond, (2) = hydrophobic interaction, (3) = electrostatic interaction, (4) = undesired bond, (5) = 
other interaction. Ala: Alanine; Asn: Asparagine; Asp: Aspartate; Arg: Arginine; Cys: Cystein; Gln: Glutamine; Glu: Glutamate; Gly: Glycine; His: histidine; Ile: 
Isoleucine; Leu: Leucine; Lys: Lysine; Met: Methionine; Phe: Phenylalanine; Pro: Proline; Ser: Serine; Thr: Threonine; Trp: Tryptophan; Tyr: Tyrosine; Val: Valine. 

 

 

Figure 1: 3D, 2D, and chemical interaction visualisation of selected ligand compounds and target proteins: 

Leptin (pro-inflammatory adipokines), B. Adiponectin (anti-inflammatory adipokines). 
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Discussion 

Molecular docking was employed to identify the 
binding affinity and chemical interactions of amino 
acids between the ligands and the target proteins 
(Mohanty & Mohanty, 2023). Weak bonds in these 
interactions, such as hydrogen bonds and hydrophobic 
and electrostatic interactions, aid in activating and 
stabilising specific biological responses (Ertan-Bolelli & 
Bolelli, 2021). Previous studies have indicated a 
preference for hydrophobic interactions in ligand-
protein binding due to their greater strength (Li et al., 
2021b). The presence of additional hydrogen bonds 
contributes to the stability and turnover of cellular 
activity (Meyer et al., 2017). Additional electrostatic 
interaction induces conformational changes in the 
protein surface, leading to alterations in its structure 
and conformational stability (Roach et al., 2005). 
Notably, pi-cation interactions are pivotal in protein 
conformation in hydrophilic and hydrophobic 
environments (Infield et al., 2021). Additionally, the 
similarity in some ligand binding to several residues and 
active sites holds potential for development in 
subsequent tests (Detmar et al., 2018).  

Metabolic syndrome, due to dysfunctional adipose 
tissue, is characterised by an increase in leptin in 
parallel to a decrease in adiponectin concentrations 
(Oh et al., 2017). Figure 1 visualises the chemical 
interactions of selected ligand compounds and target 
proteins (represented by leptin and adiponectin). The 
chemical interactions of the leptin(G)-mangostanin 
complex featured additional electrostatic interactions, 
and hydrophobic interactions dominate in this 
complex, primarily occurring in the A and C chains. 
Conversely, the leptin(G)-ladanein complex displays a 
similar bonding pattern but exhibits fewer hydrophobic 
interactions and additional residues from the E chain. 
Notably, leptin's A, C, and E chains are essential 
subunits that bind to leptin receptors and play pivotal 
roles in regulating body weight (Tsirigotaki et al., 2023). 
Based on research, leptin enhances metabolism and 
reduces appetite (Oh et al., 2017). The adiponectin(A)-
mangostanol complex exhibits numerous hydrophobic 
interactions and absent undesired bonds. The 
adiponectin(A)-mangostanol and adiponectin(A)-
rosmarinic acid complexes exhibit similar bonding 
patterns with several residues such as A:Tyr111, 
A:Val110, C:Tyr111, and C:His241. Additionally, 
residues A:Val110 and C:His241 emerged as prominent 
binding targets with triple hydrogen bonds (Meyer et 
al., 2017).  

Anti-inflammatory adipokines (i.e. adiponectin(A), 
omentin1(B), and SFRP5(C)) mitigate impaired lipid and 
glucose metabolism, leading to improved whole-body 
insulin sensitivity levels (Table II) (Oh et al., 2017). The 

omentin1(B)-mangostanin and omentin1(B)-ladanein 
complexes were reinforced by hydrogen bonds and 
hydrophobic interactions. The omentin1(B)-ladanein 
complex exhibits electrostatic interaction. The 
SFRP5(C)-mangostinone and SFRP5(C)-sinensetin 
complexes exhibit similar bonding patterns with several 
residues such as A:Met139, A:Phe144, A:Phe310, 
A:Pro94, A:Trp92, A:Tyr142, and A:Tyr307. The 
SFRP5(C)-mangostinone complex exhibits the presence 
of undesired binding. 

Pro-inflammatory adipokines (i.e. ASP(D), chemerin(E), 
FABP4(F), leptin(G), vaspin(H), and visfatin(I)) are 
associated with the development of insulin resistance 
and metabolic abnormalities (Table II) (Oh et al., 2017). 
The active sites of the ASP(D)-ladanein complex are 
represented by A:Thr732 and A:Arg735. The ASP(D)-
mangostanol and ASP(D)-ladanein complexes form 
similar bonds at two residues, A:Arg710 and A:Arg736. 
The ASP(D)-mangostanol and ASP(D)-ladanein 
complexes exhibit electrostatic interactions and 
undesired bonds. The chemerin(E)-mangostanin 
complex involves hydrogen bonds, numerous 
hydrophobic interactions and electrostatic bonds. The 
presence of undesired bonds in the chemerin(E)-
ladanein complex. The active sites of FABP4(F)-
mangostinone and FABP4(F)-rosmarinic acid 
complexes are represented by A:Ala34, A:Arg107. 
Additionally, A:Cys118, is only present in FABP4(F)-
rosmarinic acid complex. The FABP4(F)-mangostinone 
and FABP4(F)-rosmarinic acid complexes exhibit similar 
bonding patterns with several residues, such as 
A:Arg107, A:Ala34, A:Met21, A:Ala76, A:Phe17, 
A:Tyr20. The FABP4(F)-mangostinone complex showed 
a stable interaction due to the distance of chemical 
interactions and the absence of an undesired bond. The 
greater the distance between atomic interactions in 
ligand-protein interactions, the less stable the 
conformation of the complex (Wang et al., 2021). The 
pi-sulfur bond in the FABP4(F)-rosmarinic acid complex 
plays a role in stabilising the protein alpha helix, which 
is preferable to the bond with heteroarene (Arthur & 
Uzairu, 2019). The vaspin(H)-mangostanin complex 
exhibits electrostatic interaction and the absence of an 
undesired bond. Vaspin(H)-mangostanin exhibits fewer 
chemical interactions in the complex. The visfatin(I)-
salvigenin and visfatin(I)-mangostanin complexes 
exhibit similar bonding patterns with several residues, 
such as A:Ala244, A:His191, A:Phe193, and B:Tyr18. The 
hydrophobic interactions with these residues influence 
target protein turnover (Detmar et al., 2018). The 
visfatin(I)-salveginin complex featured an electrostatic 
interaction. The visfatin(I)-mangostanin complex 
exhibits numerous hydrophobic interactions (Li et al., 
2021b).  
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Conclusion 

In silico approach of phytochemical compounds from 
Garcinia mangostana and Orthosiphon stamineus show 
potential as candidates for metabolic syndrome drugs 
by restoring adipokine levels. These compounds have 
demonstrated the ability to reduce levels of pro-
inflammatory adipokines while increasing anti-
inflammatory adipokines. However, further research is 
still needed. 
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