IAI CONFERENCE: The effect of biofilm formation on the outcome therapy of diabetic foot infections (DFIs) patients in the outpatient clinic and inpatient ward of Dr Sardjito General Hospital Yogyakarta
DOI:
https://doi.org/10.46542/pe.2021.212.172177Keywords:
Biofilm, Diabetic foot infections (DFIs), Outcome therapyAbstract
Introduction: Diabetes is a non-communicable disease with incidence rate of about 1.5 – 2.3% per annum with the most complication is Diabetic Foot Infections (DFIs).
Aim: This research was conducted to describe the bacteria responsible for biofilm formation and its ability to cause DFIs in biofilm formation at Dr. Sardjito General Hospital as well as the therapy outcome.
Methods: This research was conducted from September to November 2017. Specimens of samples were obtained from wound swabs of DFIs patients who met the inclusion and exclusion criteria (31 outpatients and 15 inpatients), and were then tested for culture and sensitivity and their ability to form biofilms.
Results: The DFIs with the biofilm-producing bacteria (weak to moderate) have a different outcome compared to DFIs patients without biofilms.
References
Abbas, H.A., Serry, F.M., & EL-Masry, E.M. (2013). Biofilms: The Microbial Castle of Resistance. Research Journal of Pharmacy and Technology, 6(1), 01–03.
Ackermann, P.W., & Hart, D.A. (2013). Influence of Comorbidities: Neuropathy, Vasculopathy, and Diabetes on Healing Response Quality. Advances in Wound Care, 2(8), 410–421. https://doi.org/10.1089/wound.2012.0437
Al-Rubeaan, K., Al Derwish, M., Ouizi, S., Youssef, A.M., Subhani, S.N., Ibrahim, H.M., & Alamri, B. N. (2015). Diabetic foot complications and their risk factors from a large retrospective cohort study. PloS One, 10(5), e0124446. https://doi.org/10.1371/journal.pone.0124446
Aumiller, W. D., & Dollahite, H.A. (2015). Pathogenesis and management of diabetic foot ulcers. JAAPA: Official Journal of the American Academy of Physician Assistants, 28(5), 28–34. https://doi.org/10.1097/01.JAA.0000464276.44117.b1
Banu, A., Noorul Hassan, M.M., Rajkumar, J., & Srinivasa, S. (2015). Spectrum of bacteria associated with diabetic foot ulcer and biofilm formation: A prospective study. The Australasian Medical Journal, 8(9), 280–285. https://doi.org/10.4066/AMJ.2015.2422
Bosanquet, D.C., & Harding, K.G. (2014). Wound duration and healing rates: Cause or effect? Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 22(2), 143–150. https://doi.org/10.1111/wrr.12149
Ceri, H., Olson, M.E., Stremick, C., Read, R.R., Morck, D., & Buret, A. (1999). The Calgary Biofilm Device: New Technology for Rapid Determination of Antibiotic Susceptibilities of Bacterial Biofilms. Journal of Clinical Microbiology, 37(6), 1771–1776
Currie, B.J., Ward, L., & Cheng, A.C. (2010). The Epidemiology and Clinical Spectrum of Melioidosis: 540 Cases from the 20 Year Darwin Prospective Study. PLOS Neglected Tropical Diseases, 4(11), e900. https://doi.org/10.1371/journal.pntd.0000900
Deepigaa, M. (2017). Antibacterial Resistance of Bacteria in Biofilms. Research Journal of Pharmacy and Technology, 10(11), 4019–4023. https://doi.org/10.5958/0974-360X.2017.00728.4
Guo, S., & Dipietro, L.A. (2010). Factors affecting wound healing. Journal of Dental Research, 89(3), 219–229. https://doi.org/10.1177/0022034509359125
Hoffman, L.R., D’Argenio, D.A., MacCoss, M.J., Zhang, Z., Jones, R.A., & Miller, S.I. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 436(7054), 1171–1175. https://doi.org/10.1038/nature03912
Horng, H.-C., Chang, W.-H., Yeh, C.-C., Huang, B.-S., Chang, C.-P., Chen, Y.-J., Tsui, K.-H., & Wang, P.-H. (2017). Estrogen Effects on Wound Healing. International Journal of Molecular Sciences, 18(11). https://doi.org/10.3390/ijms18112325
Korbsrisate, S., Vanaporn, M., Kerdsuk, P., Kespichayawattana, W., Vattanaviboon, P., Kiatpapan, P., & Lertmemongkolchai, G. (2005). The Burkholderia pseudomallei RpoE (AlgU) operon is involved in environmental stress tolerance and biofilm formation. FEMS Microbiology Letters, 252(2), 243–249. https://doi.org/10.1016/j.femsle.2005.09.002
LaPlante, K.L., & Mermel, L.A. (2009). In Vitro Activities of Telavancin and Vancomycin against Biofilm-Producing Staphylococcus aureus, S. epidermidis, and Enterococcus faecalis Strains. Antimicrobial Agents and Chemotherapy, 53(7), 3166–3169. https://doi.org/10.1128/AAC.01642-08
Lee, H.S., Gu, F., Ching, S.M., Lam, Y., & Chua, K.L. (2010). CdpA Is a Burkholderia pseudomallei Cyclic di-GMP Phosphodiesterase Involved in Autoaggregation, Flagellum Synthesis, Motility, Biofilm Formation, Cell Invasion, and Cytotoxicity. Infection and Immunity, 78(5), 1832–1840. https://doi.org/10.1128/IAI.00446-09
Lipsky, B.A., Berendt, A.R., Deery, H.G., Embil, J.M., Joseph, W.S., Karchmer, A.W., LeFrock, J.L., Lew, D. P., Mader, J.T., Norden, C., Tan, J.S., & Infectious Diseases Society of America. (2004). Diagnosis and treatment of diabetic foot infections. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 39(7), 885–910. https://doi.org/10.1086/424846
Lipsky, B.A., Holroyd, K.J., & Zasloff, M. (2008). Topical versus Systemic Antimicrobial Therapy for Treating Mildly Infected Diabetic Foot Ulcers: A Randomized, Controlled, Double-Blinded, Multicenter Trial of Pexiganan Cream. Clinical Infectious Diseases, 47(12), 1537–1545. https://doi.org/10.1086/593185
Mendes, J.J., Leandro, C., Mottola, C., Barbosa, R., Silva, F.A., Oliveira, M., Vilela, C.L., Melo-Cristino, J., Górski, A., Pimentel, M., São-José, C., Cavaco-Silva, P., & Garcia, M. (2014). In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. Journal of Medical Microbiology, 63(Pt 8), 1055–1065. https://doi.org/10.1099/jmm.0.071753-0
Prompers, L., Schaper, N., Apelqvist, J., Edmonds, M., Jude, E., Mauricio, D., Uccioli, L., Urbancic, V., Bakker, K., Holstein, P., Jirkovska, A., Piaggesi, A., Ragnarson-Tennvall, G., Reike, H., Spraul, M., Van Acker, K., Van Baal, J., Van Merode, F., Ferreira, I., & Huijberts, M. (2008). Prediction of outcome in individuals with diabetic foot ulcers: Focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetologia, 51(5), 747–755. https://doi.org/10.1007/s00125-008-0940-0
Sohn, M.-W., Stuck, R.M., Pinzur, M., Lee, T.A., & Budiman-Mak, E. (2010). Lower-extremity amputation risk after charcot arthropathy and diabetic foot ulcer. Diabetes Care, 33(1), 98–100. https://doi.org/10.2337/dc09-1497
Stewart, P.S., & Costerton, J.W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet (London, England), 358(9276), 135–138. https://doi.org/10.1016/s0140-6736(01)05321-1
Vella, J., Vella, M., Cassar, K., Camilleri, L., Serracino-Inglott, A., M.Azzopardi, L., & LaFerla, G. (2016). Factors Affecting Penetration of Ciprofloxacin in Lower Extremity Ischemic Tissues. https://journals.sagepub.com/doi/full/10.1177/1534734615623707
Zoungas, S., Woodward, M., Li, Q., Cooper, M. E., Hamet, P., Harrap, S., Heller, S., Marre, M., Patel, A., Poulter, N., Williams, B., Chalmers, J., & ADVANCE Collaborative group. (2014). Impact of age, age at diagnosis and duration of diabetes on the risk of macrovascular and microvascular complications and death in type 2 diabetes. Diabetologia, 57(12), 2465–2474. https://doi.org/10.1007/s00125-014-3369-7