IAI CONFERENCE: Enhancing solubility and antibacterial activity using multi-component crystals of trimethoprim and malic acid

DOI:

https://doi.org/10.46542/pe.2021.212.296304

Keywords:

Antibacterial activity, Malic acid, Multicomponent crystals, Solubility, Trimethoprim

Abstract

Aim: To improve the solubility and antibacterial activity of trimethoprim (TMP) by preparing its multicomponent crystals with malic acid (MA).   

Methods: Multicomponent crystals of TMP-MA were prepared by solvent co-evaporation. The solid-state properties were characterised by powder X-ray diffraction (PXRD), differential thermal analysis (DTA), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) analyses. The solubility was investigated in an aqueous medium, while the antibacterial activity against Escherichia coli was investigated using the agar disk diffusion method.   

Results: The PXRD pattern of the TMP-MA binary system differed from the starting materials, supporting the formation of a new crystalline phase (equimolar ratio). The DTA thermogram showed a single, sharp, endothermic peak at 212.5 °C attributable to the TMP-MA multicomponent crystal's melting point. FT-IR spectroscopy showed a solid-state interaction involving proton transfer between TMP and MA. The multicomponent crystal displayed a 2.5-fold higher solubility and had increased antibacterial activity compared to TMP alone.   

Conclusions: The TMP-MA binary system forms salt-type multicomponent crystals that significantly increase solubility and antibacterial activity. Multicomponent crystal formation is a viable technique for modifying the physicochemical properties of active pharmaceutical ingredients.

References

Abidi, S. S. A., Azim, Y., Khan, S. N., & Khan, A. U. (2018). Sulfaguanidine cocrystals: Synthesis, structural characterisation and their antibacterial and hemolytic analysis. Journal of Pharmaceutical and Biomedical Analysis, 149, 351–357. https://doi.org/10.1016/j.jpba.2017.11.028

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Basavoju, S., Boström, D., & Velaga, S. P. (2008). Indomethacin–Saccharin Cocrystal: Design, Synthesis and Preliminary Pharmaceutical Characterization. Pharmaceutical Research, 25(3), 530–541. https://doi.org/10.1007/s11095-007-9394-1

Berry, D. J., & Steed, J. W. (2017). Pharmaceutical cocrystals, salts and multi-component systems; intermolecular interactions and property based design. Advanced Drug Delivery Reviews, 117, 3–24. https://doi.org/10.1016/j.addr.2017.03.003

Bettinetti, G. P., Caramella, C., Giordano, F., La Manna, A., Margheritis, C., & Sinistri, C. (1983). Thermal analysis of binary systems of the pharmaceuticals trimethoprim and benzoic acid. Journal of Thermal Analysis, 28(2), 285–293. https://doi.org/10.1007/BF01983262

Bhattacharya, B., Das, S., Lal, G., Soni, S. R., Ghosh, A., Reddy, C. M., & Ghosh, S. (2020). Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine. Journal of Molecular Structure, 1199, 127028. https://doi.org/10.1016/j.molstruc.2019.127028

Bryan, R. F., Haltiwanger, R. C., & Woode, M. K. (1987). Trimethoprim acetate. Acta Crystallographica Section C Crystal Structure Communications, 43(12), 2412–2415. https://doi.org/10.1107/S0108270187087584

Byrn, S. R., & Henck, J.-O. (2012). Optimising the physical form – opportunities and limitations. Drug Discovery Today: Technologies, 9(2), e73–e78. https://doi.org/10.1016/j.ddtec.2012.03.006

Chadha, R., Rani, D., & Goyal, P. (2016). Novel cocrystals of gliclazide: characterisation and evaluation. CrystEngComm, 18(13), 2275–2283. https://doi.org/10.1039/C5CE02402A

Cherukuvada, S., Kaur, R., & Guru Row, T. N. (2016). Co-crystallization and small molecule crystal form diversity: from pharmaceutical to materials applications. CrystEngComm, 18(44), 8528–8555. https://doi.org/10.1039/C6CE01835A

Cruz-Cabeza, A. J. (2012). Acid–base crystalline complexes and the pKa rule. CrystEngComm, 14(20), 6362. https://doi.org/10.1039/c2ce26055g

Cugovčan, M., Jablan, J., Lovrić, J., Cinčić, D., Galić, N., & Jug, M. (2017). Biopharmaceutical characterisation of praziquantel cocrystals and cyclodextrin complexes prepared by grinding. Journal of Pharmaceutical and Biomedical Analysis, 137, 42–53. https://doi.org/10.1016/j.jpba.2017.01.025

da Silva, C. C., Guimarães, F. F., Ribeiro, L., & Martins, F. T. (2016). Salt or cocrystal of salt? Probing the nature of multi-component crystal forms with infrared spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 167, 89–95. https://doi.org/10.1016/j.saa.2016.05.042

Dwichandra Putra, O., Umeda, D., Fujita, E., Haraguchi, T., Uchida, T., Yonemochi, E., & Uekusa, H. (2018). Solubility improvement of benexate through salt formation using artificial sweetener. Pharmaceutics, 10(2), 64. https://doi.org/10.3390/pharmaceutics10020064

Dwichandra Putra, O., Yonemochi, E., & Uekusa, H. (2016). Isostructural Multicomponent Gliclazide Crystals with Improved Solubility. Crystal Growth & Design, 16(11), 6568–6573. https://doi.org/10.1021/acs.cgd.6b01279

Fernandes, R. P., do Nascimento, A. L. C. S., Carvalho, A. C. S., Teixeira, J. A., Ionashiro, M., & Caires, F. J. (2019). Mechanochemical synthesis, characterisation, and thermal behavior of meloxicam cocrystals with salicylic acid, fumaric acid, and malic acid. Journal of Thermal Analysis and Calorimetry, 138(1), 765–777. https://doi.org/10.1007/s10973-019-08118-7

Guptat, R. L., Kumar, R., & Singla, A. K. (1991). Enhanced dissolution and absorption of trimethoprim from coprecipitates with polyethylene glycols and polyvinylpyrrolidone. Drug Development and Industrial Pharmacy, 17(3), 463–468. https://doi.org/10.3109/03639049109043840

Hawser, S., Lociuro, S., & Islam, K. (2006). Dihydrofolate reductase inhibitors as antibacterial agents. Biochemical Pharmacology, 71(7), 941–948. https://doi.org/10.1016/j.bcp.2005.10.052

Karagianni, A., Malamatari, M., & Kachrimanis, K. (2018). Pharmaceutical Cocrystals: New Solid Phase Modification Approaches for the Formulation of APIs. Pharmaceutics, 10(1), 18. https://doi.org/10.3390/pharmaceutics10010018

Kawabata, Y., Wada, K., Nakatani, M., Yamada, S., & Onoue, S. (2011). Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmaceutics, 420(1), 1–10. https://doi.org/10.1016/j.ijpharm.2011.08.032

Li, N., Zhang, Y.-H., Wu, Y.-N., Xiong, X.-L., & Zhang, Y.-H. (2005). Inclusion complex of trimethoprim with β-cyclodextrin. Journal of Pharmaceutical and Biomedical Analysis, 39(3–4), 824–829. https://doi.org/10.1016/j.jpba.2005.05.011

Loya, J. D., Li, S. J., Unruh, D. K., & Hutchins, K. M. (2019). Application of the pKa rule to synthesise salts of bezafibrate. Supramolecular Chemistry, 31(8), 558–564. https://doi.org/10.1080/10610278.2019.1635695

Lu, E., Rodríguez-Hornedo, N., & Suryanarayanan, R. (2008). A rapid thermal method for cocrystal screening. CrystEngComm, 10(6), 665. https://doi.org/10.1039/b801713c

Molu, Z. B., & Yurdakoç, K. (2010). Preparation and characterisation of aluminum pillared K10 and KSF for adsorption of trimethoprim. Microporous and Mesoporous Materials, 127(1–2), 50–60. https://doi.org/10.1016/j.micromeso.2009.06.027

Muthiah, P. T., Francis, S., Rychlewska, U., & Warżajtis, B. (2006). Crystal engineering of analogous and homologous organic compounds: hydrogen bonding patterns in trimethoprim hydrogen phthalate and trimethoprim hydrogen adipate. Beilstein Journal of Organic Chemistry, 2(1), 8. https://doi.org/10.1186/1860-5397-2-8

Ober, C. A., Montgomery, S. E., & Gupta, R. B. (2013). Formation of itraconazole/L-malic acid cocrystals by gas antisolvent cocrystallisation. Powder Technology, 236, 122–131. https://doi.org/10.1016/j.powtec.2012.04.058

Pan, X., Zheng, Y., Chen, R., Qiu, S., Chen, Z., Rao, W., Chen, S., You, Y., Lü, J., Xu, L., & Guan, X. (2019). Cocrystal of Sulfamethazine and p-Aminobenzoic Acid: Structural Establishment and Enhanced Antibacterial Properties. Crystal Growth & Design, 19(4), 2455–2460. https://doi.org/10.1021/acs.cgd.9b00137

Paramanandana, A., Erfadrin, V. E., Sari, R., Paramita, D. P., & Setyawan, D. (2020). Compression force effect on characteristics of loratadine-succinic acid cocrystal prepared by slurry method. Journal of Research in Pharmacy, 24(3), 410–415. https://doi.org/10.35333/jrp.2020.163

Pawar, P. H., Pawar, A. P., Mahadik, K. R., & Paradkar, A. R. (1998). Evaluation of tableting properties of agglomerates obtained by spherical crystallisation of trimethroprim. Indian Journal of Pharmaceutical Sciences, 60(1), 24–28.

Prabakaran, P., Robert, J. J., Thomas Muthiah, P., Bocelli, G., & Righi, L. (2001). Aminopyrimidine–carboxyl(ate) interactions in trimethoprim maleate, an antifolate drug. Acta Crystallographica Section C Crystal Structure Communications, 57(4), 459–461. https://doi.org/10.1107/S0108270101000269

Rahman, Z., Samy, R., Sayeed, V. A., & Khan, M. A. (2012). Physicochemical and mechanical properties of carbamazepine cocrystals with saccharin. Pharmaceutical Development and Technology, 17(4), 457–465. https://doi.org/10.3109/10837450.2010.546412

Sathisaran, I., & Dalvi, S. (2018). Engineering Cocrystals of Poorly Water-Soluble Drugs to Enhance Dissolution in Aqueous Medium. Pharmaceutics, 10(3), 108. https://doi.org/10.3390/pharmaceutics10030108

Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug Solubility: Importance and Enhancement Techniques. ISRN Pharmaceutics, 2012, 195727. https://doi.org/10.5402/2012/195727

Serrano, D. R., Persoons, T., D’Arcy, D. M., Galiana, C., Dea-Ayuela, M. A., & Healy, A. M. (2016). Modelling and shadowgraph imaging of cocrystal dissolution and assessment of in vitro antimicrobial activity for sulfadimidine/4-aminosalicylic acid cocrystals. European Journal of Pharmaceutical Sciences, 89, 125–136. https://doi.org/10.1016/j.ejps.2016.04.030

Serrano, D. R., O’Connell, P., Paluch, K. J., Walsh, D., & Healy, A. M. (2016). Cocrystal habit engineering to improve drug dissolution and alter derived powder properties. Journal of Pharmacy and Pharmacology, 68(5), 665–677. https://doi.org/10.1111/jphp.12476

Shete, A., Murthy, S., Korpale, S., Yadav, A., Sajane, S., Sakhare, S., & Doijad, R. (2015). Cocrystals of itraconazole with amino acids: Screening, synthesis, solid state characterisation, in vitro drug release and antifungal activity. Journal of Drug Delivery Science and Technology, 28, 46–55. https://doi.org/10.1016/j.jddst.2015.05.006

Sheth, A. R., & Grant, D. J. W. (2005). Relationship between the Structure and Properties of Pharmaceutical Crystals. KONA Powder and Particle Journal, 23, 36–48. https://doi.org/10.14356/kona.2005008

Sopyan, I., Fudholi, A., Muchtaridi, M., & Sari, I. P. (2017). Simvastatin-nicotinamide cocrystal: design, preparation and preliminary characterisation. Tropical Journal of Pharmaceutical Research, 16(2), 297. https://doi.org/10.4314/tjpr.v16i2.6

Thakral, N. K., Zanon, R. L., Kelly, R. C., & Thakral, S. (2018). Applications of Powder X-Ray Diffraction in Small Molecule Pharmaceuticals: Achievements and Aspirations. Journal of Pharmaceutical Sciences, 107(12), 2969–2982. https://doi.org/10.1016/j.xphs.2018.08.010

Umadevi, B., Prabakaran, P., & Muthiah, P. T. (2002). A pseudo-quadruple hydrogen-bonding motif consisting of six N—H...O hydrogen bonds in trimethoprim formate. Acta Crystallographica Section C Crystal Structure Communications, 58(8), o510–o512. https://doi.org/10.1107/S0108270102011150

Uslu, H., & Kırbaşlar, Ş. İ. (2010). Extraction of aqueous of malic acid by trioctylamine extractant in various diluents. Fluid Phase Equilibria, 287(2), 134–140. https://doi.org/10.1016/j.fluid.2009.09.022

Vangala, V. R., Chow, P. S., & Tan, R. B. H. (2011). Characterisation, physicochemical and photo-stability of a cocrystal involving an antibiotic drug, nitrofurantoin, and 4-hydroxybenzoic acid. CrystEngComm. https://doi.org/10.1039/c0ce00772b

Yuliandra, Y., Izadihari, R., Rosaini, H., & Zaini, E. (2019). Multi-component crystals of mefenamic acid – tromethamine with improved dissolution rate. Journal of Research in Pharmacy, 23(6), 988–996. https://doi.org/10.35333/jrp.2019.63

Yuliandra, Y., Zaini, E., Syofyan, S., Pratiwi, W., Putri, L. N., Pratiwi, Y. S., & Arifin, H. (2018). Cocrystal of ibuprofen–nicotinamide: Solid-state characterisation and in vivo analgesic activity evaluation. Scientia Pharmaceutica, 86(2), 23. https://doi.org/10.3390/scipharm86020023

Zaini, E., Fitriani, L., Sari, R. Y., Rosaini, H., Horikawa, A., & Uekusa, H. (2019). Multi-component Crystal of Mefenamic Acid and N-Methyl-d-Glucamine: Crystal Structures and Dissolution Study. Journal of Pharmaceutical Sciences, 108(7), 2341–2348. https://doi.org/10.1016/j.xphs.2019.02.003

Zaini, E., Sumirtapura, Y. C., Halim, A., Fitriani, L., & Soewandhi, S. N. (2017). Formation and characterisation of sulfamethoxazole-trimethoprim cocrystal by milling process. Journal of Applied Pharmaceutical Science, 7(12), 169–173. https://doi.org/10.7324/JAPS.2017.71224

Downloads

Published

28-07-2021

How to Cite

IAI CONFERENCE: Enhancing solubility and antibacterial activity using multi-component crystals of trimethoprim and malic acid. (2021). Pharmacy Education, 21(2), p. 296–304. https://doi.org/10.46542/pe.2021.212.296304

Issue

Section

Conference Proceedings