IAI SPECIAL EDITION: Development of novel curcumin nanoemulgel: Optimisation, characterisation, and ex vivo permeation

Authors

  • Ferdy Firmansyah Sekolah Tinggi Ilmu Farmasi (STIFAR) Riau, Tampan, Pekanbaru, Riau, Indonesia
  • Wildan Khairi Muhtadi Sekolah Tinggi Ilmu Farmasi (STIFAR) Riau, Tampan, Pekanbaru, Riau, Indonesia https://orcid.org/0000-0001-6635-2090
  • Sepfira Indriani Sekolah Tinggi Ilmu Farmasi (STIFAR) Riau, Tampan, Pekanbaru, Riau, Indonesia
  • Maulana Dziya Ulhaq Sekolah Tinggi Ilmu Farmasi (STIFAR) Riau, Tampan, Pekanbaru, Riau, Indonesia
  • Suci Rizki Auliya Sekolah Tinggi Ilmu Farmasi (STIFAR) Riau, Tampan, Pekanbaru, Riau, Indonesia
  • Benni Iskandar Sekolah Tinggi Ilmu Farmasi (STIFAR) Riau, Tampan, Pekanbaru, Riau, Indonesia
  • Nesa Agistia Sekolah Tinggi Ilmu Farmasi (STIFAR) Riau, Tampan, Pekanbaru, Riau, Indonesia
  • Lutfi Chabib Islamic University of Indonesia, Yogyakarta, Indonesia https://orcid.org/0000-0002-1250-1406

DOI:

https://doi.org/10.46542/pe.2022.222.98103

Keywords:

Curcumin, Nanoemulsions, Nanoemulgels, Permeation

Abstract

Introduction: Curcumin (Crc) is widely used as an antioxidant and an anti-inflammatory agent. Its low solubility limits its oral bioavailability, thus the need to develop a transdermal nanoformulation of Crc.   

Aim: This study aimed to obtain the stable formula of Crc-loaded nanoemulgels (Crc-NEGs) possessing good characteristics.   

Methods: The nanoemulsion (NE) was prepared by titration of the water phase into the mixture of oil, surfactant, and cosurfactant. Crc-NEs optimum formula was obtained by the simplex lattice design (SLD) method. Crc-NEGs were prepared using Carbopol 940 as the gelling agent, and subsequently, its freeze-thaw stability was observed. The ex vivo permeation study of Crc-NEGs was conducted using Franz diffusion cell.   

Results: The optimum formula of Crc-NEs showed good characteristics in terms of transmittance, particle size, polydispersity index, and zeta potential. Crc-NEGs were found stable through freeze-thaw stability. The ex vivo permeation study illustrated the higher amount of Crc penetrated from NEGs compared to the control (p <0,05).   

Conclusion: The Crc-NEGs formula has the potential to be the novel effective delivery method of curcumin.

Author Biography

Lutfi Chabib, Islamic University of Indonesia, Yogyakarta, Indonesia

Department of Pharmacy

References

Ahmad, J., Gautam, A., Komath, S., Bano, M., Garg, A., & Jain, K. (2019). Topical Nano-emulgel Ahmad, J., Gautam, A., Komath, S., Bano, M., Garg, A., & Jain, K. (2019). Topical Nano-emulgel for Skin Disorders: Formulation Approach and Characterisation. Recent Patents on Anti-Infective Drug Discovery, 14(1), 36–48. https://doi.org/10.2174/1574891X14666181129115213

Cai, X.J., Mesquida, P., & Jones, S.A. (2016). Investigating the ability of nanoparticle-loaded hydroxypropyl methylcellulose and xanthan gum gels to enhance drug penetration into the skin. International Journal of Pharmaceutics, 513(1–2), 302–308. https://doi.org/10.1016/j.ijpharm.2016.08.055

Candioti, L.V., De Zan, M.M., Cámara, M.S., & Goicoechea, H. C. (2014). Experimental design and multiple response optimisation. Using the desirability function in analytical methods development. Talanta, 124, 123–138. https://doi.org/10.1016/j.talanta.2014.01.034

Donsì, F., Wang, Y., & Huang, Q. (2011). Freeze–thaw stability of lecithin and modified starch-based nanoemulsions. Food Hydrocolloids, 25(5), 1327–1336. https://doi.org/10.1016/j.foodhyd.2010.12.008

Duangjit, S., Mehr, L.M., Kumpugdee-Vollrath, M., & Ngawhirunpat, T. (2014). Role of Simplex Lattice Statistical Design in the Formulation and Optimisation of Microemulsions for Transdermal Delivery. Biological and Pharmaceutical Bulletin, 37(12), 1948–1957. https://doi.org/10.1248/bpb.b14-00549

Effendy, I., & Maibach, H.I. (1995). Surfactants and experimental irritant contact dermatitis. Contact Dermatitis, 33(4), 217–225. https://doi.org/10.1111/j.1600-0536.1995.tb00470.x

Hewlings, S.J., & Kalman, D.S. (2017). Curcumin: A Review of Its' Effects on Human Health. Foods, 6(10), 92. https://doi.org/10.3390/foods6100092

Khurana, S., Jain, N.K., & Bedi, P.M.S. (2013). Nanoemulsion based gel for transdermal delivery of meloxicam: Physico-chemical, mechanistic investigation. Life Sciences, 92(6–7), 383–392. https://doi.org/10.1016/j.lfs.2013.01.005

Kim, B.S., Won, M., Lee, K.M., & Kim, C.S. (2008). In vitro permeation studies of nanoemulsions containing ketoprofen as a model drug. Drug Delivery, 15(7), 465–469. https://doi.org/10.1080/10717540802328599

Lala, R.R., & Awari, N.G. (2014). Nanoemulsion-based gel formulations of COX-2 inhibitors for enhanced efficacy in inflammatory conditions. Applied Nanoscience, 4(2), 143–151. https://doi.org/10.1007/s13204-012-0177-6

Laxmi, M., Bhardwaj, A., Mehta, S., & Mehta, A. (2015). Development and characterisation of nanoemulsion as carrier for the enhancement of bioavailability of artemether. Artificial Cells, Nanomedicine, and Biotechnology, 43(5), 334–344. https://doi.org/10.3109/21691401.2014.887018

Mason, T.G., Wilking, J.N., Meleson, K., Chang, C.B., & Graves, S. M. (2006). Nanoemulsions: Formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18(41), R635–R666. https://doi.org/10.1088/0953-8984/18/41/R01

Muhtadi, W.K., Novitasari, L., Danarti, R., & Martien, R. (2020). Development of polymeric nanoparticle gel prepared with the combination of ionic pre-gelation and polyelectrolyte complexation as a novel drug delivery of timolol maleate. Drug Development and Industrial Pharmacy, 46(11), 1844–1852. https://doi.org/10.1080/03639045.2020.1821053

Muhtadi, W.K., Novitasari, L., Martien, R., & Danarti, R. (2019). Factorial design as the method in the optimisation of timolol maleate-loaded nanoparticle prepared by ionic gelation technique. International Journal of Applied Pharmaceutics, 11(5), 66–70. https://doi.org/10.22159/ijap.2019v11i5.34435

Rachmawati, H., Budiputra, D.K., & Mauludin, R. (2015). Curcumin nanoemulsion for transdermal application: Formulation and evaluation. Drug Development and Industrial Pharmacy, 41(4), 560–566. https://doi.org/10.3109/03639045.2014.884127

Setyawan, E.I., Setyowati, E.P., Rohman, A., & Nugroho, A.K. (2018). Central composite design for optimising extraction of EGCG from green tea leaf (Camellia sinensis L.). International Journal of Applied Pharmaceutics, 211–216. https://doi.org/10.22159/ijap.2018v10i6.29245

Shafiq-un-Nabi, S., Shakeel, F., Talegaonkar, S., Ali, J., Baboota, S., Ahuja, A., Khar, R.K., & Ali, M. (2007). Formulation development and optimisation using nanoemulsion technique: A technical note. AAPS PharmSciTech, 8(2), E12–E17. https://doi.org/10.1208/pt0802028

Shiyan, S., Hertiani, T., Martien, R., & Nugroho, A. K. (2018). Optimisation of a novel kinetic-assisted infundation of white tea (Camellia sinensis) using central composite design. International Journal of Applied Pharmaceutics, 259–267. https://doi.org/10.22159/ijap.2018v10i6.29654

Su, R., Fan, W., Yu, Q., Dong, X., Qi, J., Zhu, Q., Zhao, W., Wu, W., Chen, Z., Li, Y., & Lu, Y. (2017). Size-dependent penetration of nanoemulsions into epidermis and hair follicles: Implications for transdermal delivery and immunisation. Oncotarget, 8(24), 38214–38226. https://doi.org/10.18632/oncotarget.17130

Syukri, Y., Martien, R., Lukitaningsih, E., & Nugroho, A. E. (2018). Novel Self-Nano Emulsifying Drug Delivery System (SNEDDS) of andrographolide isolated from Andrographis paniculata Nees: Characterisation, in-vitro and in-vivo assessment. Journal of Drug Delivery Science and Technology, 47, 514–520. https://doi.org/10.1016/j.jddst.2018.06.014

Tang, S. Y., Manickam, S., Wei, T. K., & Nashiru, B. (2012). Formulation development and optimisation of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrasonics Sonochemistry, 19(2), 330–345. https://doi.org/10.1016/j.ultsonch.2011.07.001

Tønnesen, H. H., & Karlsen, J. (1985). Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution. Zeitschrift Fur Lebensmittel-Untersuchung Und -Forschung, 180(5), 402–404. https://doi.org/10.1007/bf01027775

Ueda, C. T., Shah, V. P., Derdzinski, K., Ewing, G., Flynn, G., Maibach, H., Marques, M., Rytting, H., Shaw, S., Thakker, K., & Yacobi, A. (2010). Topical and Transdermal Drug Products. Dissolution Technologies, 17(4), 12–25. https://doi.org/10.14227/DT170410P12

Downloads

Published

31-03-2022

How to Cite

Firmansyah, F. ., Muhtadi, W. K. ., Indriani, S. ., Ulhaq, M. D. ., Auliya, S. R. ., Iskandar, B. ., Agistia, N. ., & Chabib, L. . (2022). IAI SPECIAL EDITION: Development of novel curcumin nanoemulgel: Optimisation, characterisation, and ex vivo permeation. Pharmacy Education, 22(2), p. 98–103. https://doi.org/10.46542/pe.2022.222.98103

Issue

Section

Special Edition