Chemoinformatics approach to the screening and development of quassinoids from Brucea javanica as antituberculosis drugs
DOI:
https://doi.org/10.46542/pe.2023.234.6065Keywords:
Antituberculosis, Brucea javanica, Quassinoids, Respiratory tract infection, TuberculosisAbstract
Background: The morbidity and mortality of tuberculosis (TB) remain high in various countries as a result of pharmacological intervention failures, such as incomplete treatment regimens and inadequate doses, triggering resistance of Mycobacterium tuberculosis strains to anti-TB drugs used. This phenomenon requires innovation to explore and develop novel anti-TB drugs so that the problem of resistance is overcome and treatment of TB is more optimal.
Objective: In this study, chemoinformatics investigations were carried out on quassinoids derived from Brucea javanica to be developed as anti-TB drugs.
Method: Evaluation of drug-likeness with the SwissADME online tool, prediction of toxicity with the pkCSM online tool, and molecular docking studies with AutoDock Vina software were performed on 18 quassinoids from Brucea javanica.
Result: The findings showed that Bruceine A, Bruceine, and Bruceine D, met the drug-likeness criteria, showed a good toxicity profile, and had better binding energy (-7.5; -7.5; and -7 kcal/mol, respectively) than isoniazid (-5.8 kcal/mol) which is a first-line anti-TB drug on enoyl acyl carrier protein reductase (InhA; PDB ID: 2NSD).
Conclusion: This study found several quassinoids from Brucea javanica with the potential to be developed as anti-TB drugs.
References
Aaina, M., Venkatesh, K., Usharani, B., Anbazhagi, M., Rakesh, G. & Muthuraj, M. (2021). Risk Factors and Treatment Outcome Analysis Associated with Second-Line Drug-Resistant Tuberculosis. Journal of Respiration, 2(1):1-12 https://doi.org/10.3390/jor2010001
Ablat, A., Halabi, M.F., Mohamad, J., Hasnan, M.H.H., Hazni, H., Teh, S.H., Shilpi, J.A., Mohamed, Z. & Awang, K. (2017). Antidiabetic effects of Brucea javanica seeds in type 2 diabetic rats. BMC complementary and alternative medicine, 17(1):1-14 https://doi.org/10.1186/s12906-017-1610-x
Black, T.A. & Buchwald, U.K. (2021). The pipeline of new molecules and regimens against drug-resistant tuberculosis. Journal of Clinical Tuberculosis and other Mycobacterial Diseases, 25:100285 https://doi.org/10.1016/j.jctube.2021.100285
Chakaya, J., Khan, M., Ntoumi, F., Aklillu, E., Fatima, R., Mwaba, P., Kapata, N., Mfinanga, S., Hasnain, S.E., Katoto, P. D.M.C., Bulabula, A.N.H., Sam-Agudu, N.A., Nachega, J.B., Tiberi, S., McHugh, T.D., Abubakar, I. & Zumla, A. (2021). Global Tuberculosis Report 2020–Reflections on the Global TB burden, treatment and prevention efforts. International Journal of Infectious Diseases, 113:S7-S12
Caren, G.J., Iskandar, D., Pitaloka, D.A., Abdulah, R. & Suwantika, A.A. (2022). COVID-19 pandemic disruption on the management of tuberculosis treatment in Indonesia. Journal of multidisciplinary healthcare, 175-183 https://doi.org/10.2147/JMDH.S341130
Chauhan, A., Kumar, M., Kumar, A. & Kanchan, K. (2021). A comprehensive review of the mechanism of action, resistance and evolution of antimycobacterial drugs. Life sciences, 274:119301 https://doi.org/10.1016/j.lfs.2021.119301
Dartois, V.A. & Rubin, E.J. (2022). Anti-tuberculosis treatment strategies and drug development: Challenges and priorities. Nature Reviews Microbiology, 1-17 https://doi.org/10.1038/s41579-022-00731-y
Fukunaga, R., Glaziou, P., Harris, J.B., Date, A., Floyd, K. & Kasaeva, T. (2021). Epidemiology of tuberculosis and progress toward meeting global targets—worldwide, 2019. Morbidity and Mortality Weekly Report, 70(12):427 https://doi.org/10.15585/mmwr.mm7012a4
Gani, M.A., Nurhan, A.D., Budiatin, A.S., Siswodihardjo, S. & Khotib, J. (2021). Predicting the molecular mechanism of glucosamine in accelerating bone defect repair by stimulating osteogenic proteins. Journal of Basic and clinical physiology and Pharmacology, 32(4):373-377 https://doi.org/10.1515/jbcpp-2020-0403
Gani, M.A., Nurhan, A.D., Maulana, S., Siswodihardjo, S., Shinta, D.W. & Khotib, J. (2021). Structure-based virtual screening of bioactive compounds from Indonesian medical plants against severe acute respiratory syndrome coronavirus-2. Journal of Advanced Pharmaceutical Technology & Research, 12(2):120 https://doi.org/10.4103/japtr.JAPTR_88_21
Guo, H., Chen, Y., Wang, J., Ma, H. & Liu, Y. (2022). A Critical Review: Anti-Cancer Effects of Brucea javanica and the Mechanisms. Pharmacological Research-Modern Chinese Medicine, 100133 https://doi.org/10.1016/j.prmcm.2022.100133
Huang, Y.F., Zhou, J.T., Qu, C., Dou, Y.X., Huang, Q.H., Lin, Z.X., Xian Y.F., Xie, J.H., Xie, Y.L., Lai, X.P. & Su, Z.R. (2017). Anti-inflammatory effects of Brucea javanica oil emulsion by suppressing NF-κB activation on dextran sulfate sodium-induced ulcerative colitis in mice. Journal of Ethnopharmacology, 198:389-398 https://doi.org/10.1016/j.jep.2017.01.042
Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 64:4- 17 https://doi.org/10.1016/j.addr.2012.09.019
Nurhan, A.D., Gani, M.A., Budiatin, A.S., Siswodihardjo, S. & Khotib, J. (2021). Molecular docking studies of Nigella sativa L and Curcuma xanthorrhiza Roxb secondary metabolites against histamine N-methyltransferase with their ADMET prediction. Journal of Basic and Clinical Physiology and Pharmacology, 32(4):795-802 https://doi.org/10.1515/jbcpp-2020-0425
Nurhan, A.D., Gani, M.A., Maulana, S., Siswodihardjo, S., Ardianto, C. & Khotib, J. (2022). Molecular Docking Studies for Protein-Targeted Drug Development in SARS-CoV-2. Letters in Drug Design & Discovery, 19(5):428-439 https://doi.org/10.2174/1570180818666210512021619
Pires, D.E., Blundell, T.L. & Ascher, D.B. (2015). pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of medicinal chemistry, 58(9):4066-4072 https://doi.org/10.1021/acs.jmedchem.5b00104
Prestinaci, F., Pezzotti, P. & Pantosti, A. (2015). Antimicrobial resistance: A global multifaceted phenomenon. Pathogens and global health, 109(7):309-318 https://doi.org/10.1179/2047773215Y.0000000030
Qiang, L., Zhang, Y. & Liu, C.H. (2021). Mycobacterium tuberculosis effector proteins: functional multiplicity and regulatory diversity. Cellular & Molecular Immunology, 18(5):1343-1344 https://doi.org/10.1038/s41423-021-00676-x
Tiberi, S., Vjecha, M.J., Zumla, A., Galvin, J., Migliori, G.B. & Zumla, A. (2021). Accelerating the development of new shorter TB treatment regimens in anticipation of a resurgence of multi-drug resistant TB due to the COVID-19 pandemic. International Journal of Infectious Diseases, 113:S96-S99 https://doi.org/10.1016/j.ijid.2021.02.067
Unissa, A.N., Subbian, S., Hanna, L.E. & Selvakumar, N. (2016). Overview of mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infection, Genetics and Evolution, 45:474-492 https://doi.org/10.1016/j.meegid.2016.09.004
Ye, Q.M., Bai, L.L., Hu, S.Z., Tian, H.Y., Ruan, L.J., Tan, Y.F., Hu, L.P., Ye, W.C., Zhang, D.M., & Jiang, R.W. (2015). Isolation, chemotaxonomic significance and cytotoxic effects of quassinoids from Brucea javanica. Fitoterapia, 105:66-72 https://doi.org/10.1016/j.fitote.2015.06.004