Docking study and molecular dynamic approach to predicting the activity of 4-(4-methoxy)benzoyloxy-3-methoxycinnamic acid against COX-1 enzyme
DOI:
https://doi.org/10.46542/pe.2023.234.173179Keywords:
4-(4-methoxy)benzoyloxy-3-methoxycinnamic acid, ADMET prediction, Anti-inflammatory, Anti-thrombotic, Ferulic acidAbstract
Background: Ferulic acid is a phenolic acid compound that has anti-inflammatory and anti-thrombosis activity. However, ferulic acid has the disadvantage of poor absorption. Structural modifications can be made to increase the biological activity of the compound. In this research, the structure of ferulic acid was modified into 4-(4-methoxy)benzoyloxy-3-methoxycinnamic acid.
Objective: The purpose of this research is to predict the activity of 4-(4-methoxy)benzoyloxy-3-methoxycinnamic acid.
Method: It was carried out using the Pass Online Prediction, Autodock 1.5.7, Discovery Studio and Maestro Schrödinger 2020-1 software.
Result: The activity prediction results showed that 4-(4-methoxy)benzoyloxy-3-methoxycinnamic acid had anti-inflammatory and anti-thrombotic activity. The molecular docking results showed that 4-(4-methoxy)benzoyloxy-3-methoxycinnamic acid had lower free bond energy values than ferulic acid, hence, predicted to have greater activity. Molecular dynamics also reveal better stability interactions of the 4-(4-methoxy)benzoyloxy-3-methoxycinnamic acid with COX-1 protein than the ferulic acid.
Conclusion: The compund, 4-(4-methoxy)benzoyloxy-3-methoxycinnamic acid is feasible to be synthesised.
References
Alegbeleye, B.J., O.-O.P. Akpoveso, A.J. Alegbeleye, R.K. Mohammed, & E. Esteban-Zubero. (2020). The novel aspirin as breakthrough drug for COVID-19: A narrative review. Iberoamerican Journal of Medicine, 2(4), 335–50. https://doi.org/10.53986/ibjm.2020.0058
Bathini, R., Sivan, S.K., Fatima, S. & Manga, V. (2016). Molecular docking, MM/GBSA and 3D-QSAR studies on EGFR inhibitors. Journal of Chemical Sciences, 128(7), 1163–1173. https://doi.org/10.1007/s12039-016-1103-3
Bowers, K.J., Chow, D.E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J., Shan, Y., & Shaw, D.E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC'06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 43–43. http://dx.doi.org/10.1145/1188455.1188544
Choi, J.-H., Park, J.-K., Kim, K.-M., Lee, H.-J., & Kim, S. (2017). In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. Journal of Biochemical and Molecular Toxicology, 32(1). https://doi.org/10.1002/jbt.22004
Contardi, M., M. Lenzuni, F. Fiorentini, M. Summa, R. Bertorelli, G. Suarato, & A. Athanassiou. (2021). Hydroxycinnamic acids and derivatives formulations for skin damages and disorders : A review. Pharmaceutics, 13. https://doi.org/10.3390/pharmaceutics13070999
Cucinotta, D., & M. Vanelli. (2020). WHO declares COVID-19 a pandemic. Acta Biomedica, 91(1), 157–60. https://doi.org/10.23750/abm.v91i1.9397
Ekowati, J., N. W. Diyah, K.A. Nofianti, I.S. Hamid, & Siswandono. (2018). Molecular docking of ferulic acid derivatives on P2Y12 receptor and their ADMET prediction. Journal of Mathematical and Fundamental Sciences, 50(2), 203–19. https://doi.org/10.5614/j.math.fund.sci.2018.50.2.8
Filimonov, D.A., Lagunin, A.A., T.A. Gloriozova, A.V. Rudik, D.S. Druzhilovskii, P.V. Pogodin, & V.V. Poroikov. (2014). Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–57. https://doi.org/10.1007/s10593-014-1496-1
Godschalk, F., Genheden, S., Söderhjelm, P. and Ryde, U., (2013). Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations. Physical Chemistry Chemical Physics, 15(20), 7731–7739. https://doi.org/10.1039/C3CP00116D
Lipinski, C.A., F. Lombardo, B.W. Dominy, & Feeney, P.J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23, 3–25. https://doi.org/10.1016/s0169-409x(00)00129-0
Ortega-Paz, L., Capodanno, D., Montalescot, G., Angiolillo, D.J. (2021). Coronavirus disease 2019–Associated thrombosis and coagulopathy: Review of the pathophysiological characteristics and implications for antithrombotic management. Journal of the American Heart Association, 10(3), 1–24. https://doi.org/10.1161/JAHA.120.019650
Selinsky, B.S., Gupta, K., Sharkey, C.T, Loll, P.J. (2001). Structural analysis of NSAID binding by prostaglandin H2 synthase: Time-dependent and time-independent inhibitors elicit identical enzyme conformations. Biochemistry, 40(17), 5172–5180. https://doi.org/10.1021/bi010045s
Sriramulu, D.K., S. Wu, & Lee. S.G. (2019). Effect of ligand torsion number on the autodock mediated prediction of protein-ligand binding affinity. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2019.12.009
Susanti, N.M., Laksmiani, N.P., Dewi, P.P., and Dewi, P.Y. (2019). Molecular docking terpinen-4-Ol pada protein IKK sebagai antiinflamasi pada aterosklerosis secara in silico. Jurnal Farmasi Udayana, 8(1), 44–49. https://doi.org/10.24843/JFU.2019.v08.i01.p07
Zhang, P.X., Lin, H., Qu, C., Tang, Y.P., Li, N.G., Kai, J., Shang, G., Li, B., Zhang, L., Yan, H., Liu, P. & Duan, J.A. (2015). Design, synthesis, and in vitro antiplatelet aggregation activities of ferulic acid derivatives. Journal of Chemistry. https://doi.org/10.1155/2015/376527
Zubair, M., Maulana, S., Widodo, A., Pitopang, R., Arba, M., & Hariono, M. (2021). GC-MS, LC-MS/ms, docking and molecular dynamics approaches to identify potential SARS-COV-2 3-chymotrypsin-like protease inhibitors from Zingiber Officinale roscoe. Molecules, 26(17), 5230. https://doi.org/10.3390/molecules26175230