Increased levels of IL-10 in the spleen after induction of pili protein 65.5 kDa Klebsiella pneumoniae

Authors

  • Dini Agustina Universitas Jember, Jember, Indonesia https://orcid.org/0000-0002-1861-0056
  • Diana Chusna Mufida Universitas Jember, Jember, Indonesia
  • Enny Suswati Universitas Jember, Jember, Indonesia
  • M. Ali Shodikin Universitas Jember, Jember, Indonesia https://orcid.org/0000-0002-8216-3609
  • Bagus Hermansyah Universitas Jember, Jember, Indonesia
  • Ajeng Samrotu Sa'adah Universitas Jember, Jember, Indonesia
  • Tio Wisnu Pradana Putra Universitas Jember, Jember, Indonesia
  • Samudra Ayu Universitas Jember, Jember, Indonesia

DOI:

https://doi.org/10.46542/pe.2023.234.304310

Keywords:

IL-10, Klebsiella pneumoniae, Protein pili, Spleen

Abstract

Background: One of the gram-negative bacteria often found as the cause of nosocomial infections is Klebsiella pneumoniae. This bacterium has a mortality rate of 28.3% due to ESBL strains that cause resistance to several antibiotics and the absence of a vaccine as a preventive measure.

Objective: To determine the level of IL-10 in the spleen after induction of the protein pili K. pneumoniae 65.5 kDa in mice.

Method: This study used mice spleen samples from 21 mice aged six to eight weeks in an experimental investigation with a randomised posttest-only control group design. There are three groups, K1 as a PBS-given control, 65.5 kDa antigen protein pills + Freund’s adjuvants are given to K2, and Freund's adjuvants are given to K3. Interleukin-10 concentrations were measured using the ELISA and analysed by a one-way ANOVA assay.

Result: The research showed significant differences in each group at IL-10 levels after administration of the pili protein K. pneumoniae using one-way ANOVA (p = 0.036). The treatment group had the highest average levels of IL-10, so there was an increased association between exposure to pili protein and IL-10 levels in rats. A significant increase in IL-10 levels was found in the treatment group compared to the control and adjuvant groups.

Conclusion: Induction of protein pili Klebsiella pneumoniae 65.5 kDa increases IL-10 levels in spleen mice.

Author Biographies

Dini Agustina, Universitas Jember, Jember, Indonesia

Department of Microbiology, Faculty of Medicine

Diana Chusna Mufida, Universitas Jember, Jember, Indonesia

Department of Microbiology, Faculty of Medicine

Enny Suswati, Universitas Jember, Jember, Indonesia

Department of Microbiology, Faculty of Medicine

M. Ali Shodikin, Universitas Jember, Jember, Indonesia

Department of Microbiology, Faculty of Medicine

Bagus Hermansyah, Universitas Jember, Jember, Indonesia

Department of Parasitology, Faculty of Medicine

Ajeng Samrotu Sa'adah, Universitas Jember, Jember, Indonesia

Faculty of Medicine

Tio Wisnu Pradana Putra, Universitas Jember, Jember, Indonesia

Faculty of Medicine

Samudra Ayu, Universitas Jember, Jember, Indonesia

Faculty of Medicine

References

Agustina, D., Aisyah, S. M., Sutejo, I. R., & Mufida, D. C. (2020). Characterization of pili protein with the molecular mass of 85 kDa Escherichia coli as an adhesin and a hemagglutinin. JKKI : Jurnal Kedokteran Dan Kesehatan Indonesia, 11(3), 241–249. https://doi.org/10.20885/JKKI.VOL11.ISS3.ART5

Agustina, D., Sumarno, & Noorhamdani. (2014). Inhibition of Klebsiella pneumoniae adhesion in mice enterocytes by antibodies of hemagglutinin pili protein with MW 12.8 kDa of Klebsiella pneumoniae.Journal of Tropical Life Science, 4(1), 19–25.

Agustina, D., Wati, M. L., Wisudanti, D. D., Shodikin, M. A., Mufida, D. C., & Suswati, E. (2022). Pili protein 65.5 kDa of Klebsiella pneumoniae induced a decrease in IL-10 in mice. Majalah Kedokteran Bandung, 54(3), 143–147. https://doi.org/10.15395/mkb.v54n3.2690

Al-Hasan, M. N., Huskins, W. C., Lahr, B. D., Eckel-Passow, J. E., & Baddour, L. M. (2011). Epidemiology and outcome of Gram-negative bloodstream infection in children: A population-based study. Epidemiology and Infection, 139(5), 791–796. https://doi.org/10.1017/S0950268810001640

Arato, V., Raso, M. M., Gasperini, G., Scorza, F. B., & Micoli, F. (2021). Prophylaxis and treatment against Klebsiella pneumoniae: Current insights on this emerging antimicrobial resistant global threat. International Journal of Molecular Sciences, 22(8). https://doi.org/10.3390/IJMS22084042

Assoni, L., Girardello, R., Converso, T. R., & Darrieux, M. (2021). Current stage in the development of Klebsiella pneumoniae vaccines. Infectious Diseases and Therapy, 10(4), 2157–2175. https://doi.org/10.1007/s40121-021-00533-4

Blancher, C., & Jones, A. (2003). SDS-PAGE and Western Blotting Techniques. In Metastasis research protocols (Vol. 57, pp. 145–162). Humana Press. https://doi.org/10.1385/1-59259-136-1:145

Brunelle, J. L., & Green, R. (2014). One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods in Enzymology, 541, 151–159. https://doi.org/10.1016/B978-0-12-420119-4.00012-4

Camacho-Gonzalez, A., Spearman, P. W., & Stoll, B. J. (2013). Neonatal infectious diseases: Evaluation of neonatal sepsis. Pediatric Clinics of North America, 60(2), 367–389. https://doi.org/10.1016/J.PCL.2012.12.003

Care, I. A., & Committee, U. (2017). Policy for adjuvant use with special emphasis on complete freund’s adjuvant. UNMC animal care and use program, 1–5.

Choi, M., Hegerle, N., Nkeze, J., Sen, S., Jamindar, S., Nasrin, S., Sen, S., Permala-Booth, J., Sinclair, J., Tapia, M. D., Johnson, J. K., Mamadou, S., Thaden, J. T., Fowler, V. G. J., Aguilar, A., Terán, E., Decre, D., Morel, F., Krogfelt, K. A., Tennant, S. M. (2020). The diversity of lipopolysaccharide (O) and capsular polysaccharide (K) antigens of invasive Klebsiella pneumoniae in a multi-country collection. Frontiers in Microbiology, 0, 1249. https://doi.org/10.3389/FMICB.2020.01249

CUSABIO. (n.d.). Mouse interleukin 10 ( IL-10 ) ELISA Kit. Catalog Number. CSB-E04608m, 17, 1–14.

Decker, M. D., Greenberg, D. P., Johnson, D. R., & Pool, V. (2019). Randomised study of immune responses to two Tdap vaccines among adolescents primed with DTaP compared with results among adolescents primed with DTwP. Vaccine, 37(35), 5003–5008. https://doi.org/10.1016/J.VACCINE.2019.07.015

Duell, B. L., Tan, C. K., Carey, A. J., Wu, F., Cripps, A. W., & Ulett, G. C. (2012). Recent insights into microbial triggers of interleukin-10 production in the host and the impact on infectious disease pathogenesis. FEMS Immunology and Medical Microbiology, 64(3), 295–313. https://doi.org/10.1111/j.1574-695X.2012.00931.x

Greenfield. (2020). Standard immunisation of mice, rats, and hamsters. Cold Spring Harb Protocol, 3(2).

Greenfield, E. A. (2019). Preparing and using adjuvants. Cold Spring Harbor Protocols, 2019(1), 73–78. https://doi.org/10.1101/pdb.prot100214

Gregoriadis, G., Popovic, M. O., Centar, L., & Perrie, Y. (2018). Vaccine adjuvants preparation methods (Issue February). https://doi.org/10.1385/1-59259-083-7

Haller, S., Eller, C., Hermes, J., Kaase, M., Steglich, M., Radonić, A., Dabrowski, P. W., Nitsche, A., Pfeifer, Y., Werner, G., Wunderle, W., Velasco, E., Sin, M. A., Eckmanns, T., & Nübel, U. (2015). What caused the outbreak of ESBL-producing Klebsiella pneumoniae in a neonatal intensive care unit, in Germany from 2009 to 2012? Reconstructing transmission with epidemiological analysis and whole-genome sequencing. BMJ Open, 5(5), e007397. https://doi.org/10.1136/BMJOPEN-2014-007397/-/DC1

Hu, G., Chen, X., Chu, W., Ma, Z., Miao, Y., Luo, X., & Fu, Y. (2022). Immunogenic characteristics of the outer membrane phosphoporin as a vaccine candidate against Klebsiella pneumoniae. Veterinary Research, 53(1), 5. https://doi.org/10.1186/s13567-022-01023-2

Khaertynov, K. H. S., Anohin, V. A., Nikolaeva, I. V., Semenova, D. R., Lyubin, S. A., Agapova, I. V., Muginova, A. I., & Khasanova, G. R. (2016). Neonatal sepsis caused by Klebsiella. Medical News of North Caucasus, 11(1), 82–86. https://doi.org/10.14300/MNNC.2016.11004

Khaertynov, K. S., Anokhin, V. A., Rizvanov, A. A., Davidyuk, Y. N., Semyenova, D. R., Lubin, S. A., & Skvortsova, N. N. (2018). Virulence factors and antibiotic resistance of Klebsiella pneumoniae strains isolated from neonates with sepsis. Frontiers in Medicine, 5(AUG), 225. https://doi.org/10.3389/FMED.2018.00225/BIBTEX

Kingsley, G. R. (1939). The determination of serum total protein, albumin, and globulin by the biuret reaction. Journal of Biological Chemistry, 131(1), 197–200. https://doi.org/10.1016/S0021-9258(18)73494-7

Kurniawati, L. R., Shodikin, M. A., Agustina, D., & Sofiana, K. D. (2021). Protein pili 96,4 kDa Klebsiella pneumoniae sebagai protein hemaglutinin and. Indonesian Journal for Health Sciences, 5(1), 25. https://doi.org/10.24269/ijhs.v5i1.2700

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970 227:5259, 227(5259), 680–685. https://doi.org/10.1038/227680a0

Lee, W. H., Choi, H. Il, Hong, S. W., Kim, K. S., Gho, Y. S., & Jeon, S. G. (2015). Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Experimental & Molecular Medicine, 47(9). https://doi.org/10.1038/EMM.2015.59

Lundberg, U., Senn, B. M., Schuler, W., Meinke, A., & Hanner, M. (2012). Identification and characterisation of antigens as vaccine candidates against Klebsiella pneumoniae. Human Vaccines & Immunotherapeutics, 9(3), 497–505. https://doi.org/10.4161/HV.23225

Lundberg, U., Senn, B. M., Schuler, W., Meinke, A., & Hanner, M. (2013a). Identification and characterisation of antigens as vaccine candidates against Klebsiella pneumoniae. Human Vaccines & Immunotherapeutics, 9(3), 497–505. https://doi.org/10.4161/HV.23225

Lundberg, U., Senn, B. M., Schuler, W., Meinke, A., & Hanner, M. (2013b). Identification and characterisation of antigens as vaccine candidates against Klebsiella pneumoniae. Human Vaccines and Immunotherapeutics, 9(3), 497–505. https://doi.org/10.4161/hv.23225

Ng, T. H. S., Britton, G. J., Hill, E. V., Verhagen, J., Burton, B. R., & Wraith, D. C. (2013). Regulation of adaptive immunity: The role of interleukin-10. Frontiers in Immunology, 4(MAY), 129. https://doi.org/10.3389/FIMMU.2013.00129/BIBTEX

Peñaloza, H. F., Noguera, L. P., Riedel, C. A., & Bueno, S. M. (2018). Expanding the current knowledge about the role of interleukin-10 to major concerning bacteria. Frontiers in Microbiology, 9(SEP), 1–8. https://doi.org/10.3389/fmicb.2018.02047

Pennini, M. E., De Marco, A., Pelletier, M., Bonnell, J., Cvitkovic, R., Beltramello, M., Cameroni, E., Bianchi, S., Zatta, F., Zhao, W., Xiao, X., Camara, M. M., DiGiandomenico, A., Semenova, E., Lanzavecchia, A., Warrener, P., Suzich, J., Wang, Q., Corti, D., & Stover, C. K. (2017). Immune stealth-driven O2 serotype prevalence and potential for therapeutic antibodies against multidrug-resistant Klebsiella pneumoniae. Nature Communications, 8(1), 1–12. https://doi.org/10.1038/s41467-017-02223-7

Schagger, H. (2003). SDS electrophoresis techniques. In Membrane protein purification and crystallisation, 85–103. https://doi.org/10.1016/B978-012361776-7/50005-X

Setiawan, H., & Nugraha, J. (2016). Analisis kadar IFN-γ dan IL-10 pada PBMC penderita tuberkulosis aktif, laten dan orang sehat, setelah di stimulasi dengan antigen ESAT-6. Jurnal Biosains Pascasarjana, 18(1), 50. https://doi.org/10.20473/jbp.v18i1.2016.50-63

Shon, A. S., Bajwa, R. P. S., & Russo, T. A. (2013). Hypervirulent (hypermucoviscous) Klebsiella pneumoniae, 4(2), 107–118. https://doi.org/10.4161/VIRU.22718

Sudiono, J. (2014). Sistem kekebalan tubuh. Penerbit Buku Kedokteran EGC, June, 1–86.

Sukarjati, S., Amilah, S., & Sudjarwo, S. (2018). No Title. Folia Medica Indonesiana, 54(2). https://doi.org/10.20473/fmi.v54i2.8866

Thanassi, D. G., Bliska, J. B., & Christie, P. J. (2012). Surface organelles assembled by secretion systems of gram-negative bacteria: Diversity in structure and function. In FEMS Microbiology Reviews (Vol. 36, Issue 6, pp. 1046–1082). Oxford Academic. https://doi.org/10.1111/j.1574-6976.2012.00342.x

The State of the World’s Antibiotics. (2015). Center for Disease Dynamics, Economics & Policy (CDDEP).

Verma, P., Berwal, P. K., Nagaraj, N., Swami, S., Jivaji, P., & Narayan, S. (2017). Neonatal sepsis: Epidemiology, clinical spectrum, recent antimicrobial agents and their antibiotic susceptibility pattern. International Journal of Contemporary Pediatrics, 2(3), 176–180. https://doi.org/10.18203/2349-3291.IJCP20150523

Weiner, L. (2016). Vital signs: Preventing antibiotic-resistant infections in hospitals—United States, 2014. Am. J. Transpl., 16, 2224–2230.

WHO Releases List of World’s Most Dangerous Superbugs - Scientific American. (n.d.).

Zea-Vera, A., & Ochoa, T. J. (2015). Challenges in the diagnosis and management of neonatal sepsis. Journal of Tropical Pediatrics, 61(1), 1–13. https://doi.org/10.1093/TROPEJ/FMU079

Downloads

Published

10-10-2023

How to Cite

Agustina, D., Diana Chusna Mufida, Enny Suswati, M. Ali Shodikin, Bagus Hermansyah, Ajeng Samrotu Sa’adah, Tio Wisnu Pradana Putra, & Samudra Ayu. (2023). Increased levels of IL-10 in the spleen after induction of pili protein 65.5 kDa Klebsiella pneumoniae. Pharmacy Education, 23(4), p. 304–310. https://doi.org/10.46542/pe.2023.234.304310

Issue

Section

Special Edition