Alzheimer's disease from a diabetic brain: Exploring the molecular process to determine the potential therapy target from marine sources
DOI:
https://doi.org/10.46542/pe.2023.234.189195Keywords:
Alzheimer’s disease, Cognitive dysfunction, Diabetes mellitus, Marine source, NeurodegenerativeAbstract
Background: The prevalence of Alzheimer’s Disease (AD) among Type 2 Diabetes Mellitus (T2D) patients has reached almost 30%. Despite the rapid development, treatments for patients with T2D have not succeeded in controlling the neurodegenerative processes that occur in these patients' brains, leading to AD pathology. Several studies have demonstrated that marine sources can inhibit several AD pathogenesis pathways in T2D patients. This review aimed to determine the effect of marine species-sourced compounds at the molecular level in inhibiting and preventing the pathogenesis of AD in T2D patients.
Method: Combinations of several terms were used to search for peer-reviewed literature published in PubMed, Scopus, and Google Scholar.
Result: Marine organisms-sourced compounds inhibited various target signalling pathways between T2D and AD, such as an inhibitor of β-site-amyloid precursor protein cleaving enzyme 1 (BACE1) also known as β-secretase, glycogen synthase kinase-3 beta (GSK3B), insulin degradation enzyme (IDE), the mammalian target of rapamycin (mTOR), nuclear factor kappa-light-chain-enhancer (NF-κb), and nuclear factor erythroid 2-related factor 2 (Nrf2).
Conclusion: Marine sources can be considered as a potential therapy to prevent or slow AD progression in T2D patients.
References
Ahmad, B., Shah, M. & Choi, S. (2019). Oceans as a source of immunotherapy. Marine Drugs, 17(5), 282 https://doi.org/10.3390/md17050282
Alonso, D., & Martnez, A. (2006). Marine Compounds as a New Source for Glycogen Synthase Kinase 3 Inhibitors. In A. Martinez, A. Castro. & M. Medina (Eds.), Wiley Series in Drug discovery and development (307–331). John Wiley & Sons, Inc. https://doi.org/10.1002/0470052171.ch16
Alzheimer’s Association. (2022). 2022 Alzheimer’s disease facts and figures. In Alzheimer’s and Dementia, 18(4). https://doi.org/10.1002/alz.12638
Ankisetty, S. Khan, S.I., Avula, B., Gochfeld, D., Khan, I.A., & Slattery, M. (2013). Chlorinated didemnins from the tunicate Trididemnum solidum. Marine Drugs, 11(11), 4478–4486. https://doi.org/10.3390/md11114478
Arya, A., Nahar, L., Khan, H.U. & Sarker, S.D. (2020). Chapter Thirteen—Anti-obesity natural products. In S.D. Sarker & L. Nahar (Eds.), Annual Reports in Medicinal Chemistry, (55), 411–433. https://doi.org/10.1016/bs.armc.2020.02.006
Barbalace, M.C., Malaguti, M., Giusti, L., Lucacchini, A., Hrelia, S., & Angeloni, C. (2019). Anti-inflammatory activities of marine algae in Neurodegenerative Diseases. International Journal of Molecular Sciences, 20(12), 3061. https://doi.org/10.3390/ijms20123061
Byun, E.B., Cho, E.J., Kim, Y.E., Kim, W.S., & Byun, E.H. (2018). Neuroprotective effect of polysaccharide separated from Perilla frutescens Britton var. Acuta Kudo against H2O2-induced oxidative stress in HT22 hippocampus cells. Bioscience, Biotechnology, and Biochemistry, 82(8), 1344–1358. https://doi.org/10.1080/09168451.2018.1460572
Cai, Z., Chen, G., He, W., Xiao, M., & Yan, L.J. (2015). Activation of mTOR: A culprit of Alzheimer’s disease? Neuropsychiatric Disease and Treatment, 11, 1015–1030 https://doi.org/10.2147/NDT.S75717
Cardoso, M.J., Costa, R.R., & Mano, J.F. (2016). Marine Origin polysaccharides in drug delivery systems. Marine Drugs, 14(2), 34. https://doi.org/10.3390/md14020034
Ghiciuc, C.M., Vicovan, A.G., Stafie, C.S., Antoniu, S.A, & Postolache, P. (2021). Marine-derived compounds for the potential treatment of glucocorticoid resistance in severe asthma. Marine Drugs, 19(11), 586. https://doi.org/10.3390/md19110586
Gogineni, V., & Hamann, M.T. (2018). Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology. Biochimica et Biophysica Acta (BBA) - General Subjects, 1862(1), 81–196. https://doi.org/10.1016/j.bbagen.2017.08.014
Granic, I. Dolga, A.M., Nijholt, I.M., Van Dijk, G., & Eisel, U.L.M. (2009). Inflammation and NF-κB in Alzheimer’s disease and diabetes. Journal of Alzheimer’s Disease, 16(4), 809–821. https://doi.org/10.3233/JAD-2009-0976
Guo, M., Zuo, L., Qiao, G., Liu, M., Cao, S., & Lin, X. (2021). PI3K/Akt/mTOR signaling as targets for developing anticancer agents from marine organisms. Journal of Ocean University of China, 20(3), 688–694. https://doi.org/10.1007/s11802-021-4636-0
Hafez G.S., & Kijjoa, A. (2021). Marine-derived compounds with anti-Alzheimer’s disease activities. Marine Drugs, 19(8), 410. https://doi.org/10.3390/md19080410
He, L., & Sun, Y. (2021). The potential role of Keap1-Nrf2 pathway in the pathogenesis of Alzheimer’s disease, type 2 diabetes, and type 2 diabetes-related Alzheimer’s disease. Metabolic Brain Disease, 36(7), 1469–1479. https://doi.org/10.1007/s11011-021-00762-z
Kamata, K., Okamoto, S., Oka, S., Kamata, H., Yagisawa, H., & Hirata, H. (2001). Cycloprodigiosin hydrocloride suppresses tumor necrosis factor (TNF) α-induced transcriptional activation by NF-κB. FEBS Letters, 507(1), 74–80. https://doi.org/10.1016/S0014-5793(01)02946-5
Kim, S.Y., Ahn, G., Kim, H.S., Je, J.G., Kim, K.N., & Jeon, Y.J. (2020). Diphlorethohydroxycarmalol (DPHC) isolated from the brown alga ishige okamurae acts on inflammatory myopathy as an inhibitory agent of TNF-α. Marine Drugs, 18(11), 529. https://doi.org/10.3390/md18110529
Kubota, T., Kurimoto, S., & Kobayashi, J. (2020). Chapter one—The manzamine alkaloids. In H.J. Knölker (Ed.), The alkaloids: Chemistry and biology (Vol. 84(1–124). Academic Press. https://doi.org/10.1016/bs.alkal.2020.03.001
Lee, J., & Jun, M. (2019). Dual BACE1 and cholinesterase Inhibitory effects of phlorotannins from Ecklonia cava—An in vitro and in silico study. Marine Drugs, 17(2). https://doi.org/10.3390/md17020091
Lei, M., Xu, H., Li, Z., Wang, Z., O’Malley, T.T., Zhang, D., Walsh, D.M., Xu, P., Selkoe, D.J., & Li, S. (2016). Soluble Aβ oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. Neurobiology of Disease, 85, 111–121.1 https://doi.org/10.1016/j.nbd.2015.10.019
Li, H.H., Su, J.H., Chiu, C.C., Lin, J.J., Yang, Z.Y., Hwang, W.I., Chen, Y.K., Lo, Y.H., & Wu, Y.J. (2013). Proteomic investigation of the sinulariolide-treated melanoma cells A375: Effects on the cell apoptosis through mitochondrial-related pathway and activation of caspase cascade. Marine Drugs, 11(7), 2625–2642. https://doi.org/10.3390/md11072625
Li, Y.X., Himaya, S.W.A., & Kim, S.K. (2013). Triterpenoids of marine origin as anti-cancer agents. Molecules, 18(7), 7886–7909. https://doi.org/10.3390/molecules18077886
Matos, A.M. de, Macedo, M. P. de, & Rauter, A.P. (2017). Bridging type 2 diabetes and Alzheimer’s disease: Assembling the puzzle pieces in the quest for the molecules with therapeutic and preventive potential. Medicinal Research Reviews, 00(0), 1–64. https://doi.org/10.1002/med
Motohashi, K., Toda, T., Sue, M., Furihata, K., Shizuri, Y., Matsuo, Y., Kasai, H., Shin-ya, K., Takagi, M., Izumikawa, M., Horikawa, Y., & Seto, H. (2010). Isolation and structure elucidation of tumescenamides A and B, two peptides produced by Streptomyces tumescens YM23-260. The Journal of Antibiotics, 63(9), 549–552. https://doi.org/10.1038/ja.2010.73
Mycroft-West, C.J., Cooper, L.C., Devlin, A.J., Procter, P., Guimond, S.E., Guerrini, M., Fernig, D.G., Lima, M.A., Yates, E.A., & Skidmore, M.A. (2019). A glycosaminoglycan extract from Portunus pelagicus inhibits BACE1, the β secretase implicated in Alzheimer’s disease. Marine Drugs, 17(5). https://doi.org/10.3390/md17050293
Mycroft-West, C.J., Devlin, A.J., Cooper, L.C., Procter, P., Miller, G.J., Fernig, D.G., Guerrini, M., Guimond, S.E., Lima, M.A., Yates, E.A., & Skidmore, M.A. (2020). Inhibition of BACE1, the β-secretase implicated in Alzheimer’s disease, by a chondroitin sulfate extract from Sardina pilchardus. Neural Regeneration Research, 15(8), 1546–1553. https://doi.org/10.4103/1673-5374.274341
Najem, D., Bamji-Mirza, M., Yang, Z., & Zhang, W. (2016). Aβ-induced insulin resistance and the effects of insulin on the cholesterol synthesis pathway and Aβ secretion in neural cells. Neuroscience Bulletin, 32(3), 227–238. https://doi.org/10.1007/s12264-016-0034-9
Naushad, M., Durairajan, S.S.K., Bera, A.K., Senapati, S., & Li, M. (2019). Natural compounds with anti-BACE1 activity as promising therapeutic drugs for treating Alzheimerʼs disease. Planta Medica, 85(17), 1316–1325. https://doi.org/10.1055/a-1019-9819
Nguyen, L.S., Vautier, M., Allenbach, Y., Zahr, N., Benveniste, O., Funck-Brentano, C., & Salem, J.E. (2019). Sirolimus and mTOR inhibitors: A review of side effects and specific management in solid organ transplantation. Drug Safety. https://doi.org/10.1007/s40264-019-00810-9
Nguyen, T.T., Ta, Q.T.H., Nguyen, T.K.O., Nguyen, T.T.D., & Giau, V. V. (2020). Type 3 diabetes and its role implications in Alzheimer’s disease. International Journal of Molecular Sciences, 21(9), 1–16. https://doi.org/10.3390/ijms21093165
Sharma, S., Guru, S.K., Manda, S., Kumar, A., Mintoo, M. J., Prasad, V.D., Sharma, P.R., Mondhe, D.M., Bharate, S.B., & Bhushan, S. (2017). A marine sponge alkaloid derivative 4-chloro fascaplysin inhibits tumor growth and VEGF mediated angiogenesis by disrupting PI3K/Akt/mTOR signaling cascade. Chemico-Biological Interactions, 275, 47–60. https://doi.org/10.1016/j.cbi.2017.07.017
Shieh, J.C.C., Huang, P.T., & Lin, Y.F. (2020). Alzheimer’s Disease and diabetes: Insulin signaling as the bridge linking two pathologies. Molecular Neurobiology, 57(4), 1966–1977. https://doi.org/10.1007/s12035-019-01858-5
Song, B., & Zhou, W. (2022). Amarogentin has protective effects against sepsis-induced brain injury via modulating the AMPK/SIRT1/NF-κB pathway. Brain Research Bulletin, 189, 44–56. https://doi.org/10.1016/j.brainresbull.2022.08.018
Soriano, S., Lu, D.C., Chandra, S., Pietrzik, C.U., & Koo, E.H. (2001). The amyloidogenic pathway of amyloid precursor protein (APP) is independent of Its cleavage by caspases. Journal of Biological Chemistry, 276(31), 29045–29050. https://doi.org/10.1074/jbc.M102456200
Tumminia, A., Vinciguerra, F., Parisi, M., & Frittitta, L. (2018). Type 2 diabetes mellitus and Alzheimer's disease: Role of insulin signalling and therapeutic implications. International Journal of Molecular Sciences, 19(11). https://doi.org/10.3390/ijms19113306
Varga, E., Juhász, G., Bozsó, Z., Penke, B., Fülöp, L., & Szegedi, V. (2015). Amyloid-β1-42 disrupts synaptic plasticity by altering glutamate recycling at the synapse. Journal of Alzheimer’s Disease, 45(2), 449–456. https://doi.org/10.3233/JAD-142367
Wiese, J., Imhoff, J.F., Gulder, T.A.M. Labes, A., & Schmaljohann, R. (2016). Marine fungi as producers of benzocoumarins, a new class of inhibitors of glycogen-synthase-kinase 3. Marine Drugs, 14(11), Article 11. https://doi.org/10.3390/md14110200
Wrighten, S.A., Piroli, G.G., Grillo, C.A., & Reagan, L.P. (2009). A look inside the diabetic brain: Contributors to diabetes-induced brain aging. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1792(5), 444–453. https://doi.org/10.1016/j.bbadis.2008.10.013
Yu, J.H., Han, K., Park, S., Cho, H., Lee, D.Y., Kim, J.W., Seo, J.A., Kim, S.G., Baik, S.H., Park, Y.G., Choi, K.M., Kim, S.M., & Kim, N.H. (2020). Incidence and risk factors for dementia in type 2 diabetes mellitus: A nationwide population-based study in Korea. Diabetes and Metabolism Journal, 44(1), 113–124. https://doi.org/10.4093/dmj.2018.0216