The activity of bioactive compounds from bidara upas (Merremia mammosa (Lour) Hall. f.) as an inhibitor of SARS-CoV2 entry stage: In silico study

Authors

  • Neny Purwitasari Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia & Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia. https://orcid.org/0000-0003-0817-7065
  • Mangestuti Agil Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
  • Siswandono Siswodihardjo Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia. https://orcid.org/0000-0002-9579-8929
  • Saipul Maulana Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia. https://orcid.org/0000-0002-3481-1819
  • Muhammad Sulaiman Zubair Faculty of Mathematics and Natural Sciences, Universitas Tadulako, Palu, Indonesia. https://orcid.org/0000-0002-3065-0480

DOI:

https://doi.org/10.46542/pe.2023.234.340343

Keywords:

ADMET, Merremia mammosa (Lour) Hall. f., Molecular docking, SARS-CoV2, TMPRSS2

Abstract

Background: Covid 19 is a global pandemic caused by SARS-CoV2, a novel coronavirus. This virus enters target organ epithelial cells by utilising two host proteins; Transmembrane Serine Protease 2 (TMPRSS2) and Angiotensin Converting Enzyme 2 (ACE2). The inhibition of TMPRSS2 has shown to be a promising means to prevent viral infection. Molecular docking, and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis will determine the activity of Merremia mammosa (Lour) Hall.f. secondary metabolites against the TMPRSS2 of SARS-CoV2.    

Objective: This study aimed to investigate the in silico activity of Merremia mammosa (Lour) Hall.f. active compounds against TMPRSS2 of SARS-CoV2.

Method: Molecular docking was performed on 206 compounds obtained through metabolite profiling from a previous study on the SARS-CoV TMPRSS-2 protein (PDB id.7MEQ) using the Maestro Schrodinger software.

Result: The results indicated there were 6 compounds (three of which were flavonoids: cynarine, phellodensin F, and gemixanthone A) with docking scores lower than standard drugs (nafamostat as a native ligand). ADMET analysis revealed that among 6 compounds, cynarine has the highest drug-likeness and the greatest inhibitory potential against TMPRSS2.

Conclusion: Cynarine was found to be active and promising to be developed as an inhibitor of the SARS-CoV2 entry step.

Author Biographies

Neny Purwitasari, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia & Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.

Doctoral Program of Pharmaceutical Sciences

Mangestuti Agil, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.

Department of Pharmaceutical Sciences

Siswandono Siswodihardjo, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.

Department of Pharmaceutical Sciences

Saipul Maulana, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.

Master Program of Pharmaceutical Sciences

Muhammad Sulaiman Zubair, Faculty of Mathematics and Natural Sciences, Universitas Tadulako, Palu, Indonesia.

Department of Pharmacy 

References

Agil, M., Studiawan, H., & Purwitasari, N. (2021). Efficacy of Merremia mammosa Hall terpenoid fraction against Mycobacterium tuberculosis. Research Journal of Pharmacy and Technology, 14(12), 6617-6620. https://doi.org/10.52711/0974-360X.2021.01143

Hussain, M., Jabeen, N., Amanullah, A., Baig, A.A., Aziz, B., Shabbir, S., Raza F., & Uddin, N. (2020). Molecular docking between human TMPRSS2 and SARS-CoV-2 spike protein: Conformation and intermolecular interactions. AIMS Microbiology, 6(3), 350. https://doi.org/10.3934/microbiol.2020021

Ikram, N.K., Durrant, J.D., Muchtaridi, M., Zalaludin, A.S., Purwitasari, N., Mohamed, N., Rahim, A.S., Lam, C.K., Normi, Y.M., Rahman, N.A., Amaro, R.E., & Wahab, H.A. (2015). A virtual screening approach for identifying plants with anti-H5N1 neuraminidase activity. Journal of chemical information and modelling, 55(2), 308-316. https://doi.org/10.1021/ci500405g

Kitagawa, I., Baek, N. I., Yokokawa, Y., Yoshikawa, M., Ohashi, K., & Shibuya, H. (1996). Indonesian medicinal plants. XVI. Chemical structures of four new resin- glycosides, merremosides f, g, h1, and h2, from the tuber of Merremia mammosa (Convolvulaceae). Chemical and Pharmaceutical Bulletin, 44(9). https://doi.org/10.1248/cpb.44.1693

Jo, S., Signorile, L., Kim, S., Kim, M.S., Huertas, O., Insa, R., Reig N., & Shin, D.H. (2022). A study of drug repurposing to identify SARS-CoV-2 main protease (3CLpro) inhibitors. International Journal of Molecular Sciences, 23(12), 6468. https://doi.org/10.3390/ijms23126468

Manjunathan, R., Periyaswami, V., Mitra, K., Rosita, A.S., Pandya, M., Selvaraj, J., Ravi L., Devarajan N., & Doble, M. (2022). Molecular docking analysis reveals the functional inhibitory effect of Genistein and Quercetin on TMPRSS2: SARS-COV-2 cell entry facilitator spike protein. BMC Bioinformatics, 23(1), 180. https://doi.org/10.1186/s12859‑022‑04724‑9

Parmar, M. S. (2021). TMPRSS2: An equally important protease as ACE2 in the pathogenicity of SARS-CoV-2 infection. Mayo Clin Proc, 96(11), 2748-2752. https://doi.org/10.1016/j.mayocp.2021.07.005

Purwitasari, N., Agil, M., & Studiawan, H. (2020). Activity of ethyl acetate fraction of Merremia mammosa hall as anti-influenza a (H1N1). Indian Journal of Forensic Medicine & Toxicology, 14(3), 2095-2098.

Purwitasari, N. & Agil, M. (2022). Metabolite profiling of extract and fractions of bidara upas (Merremia mammosa (Lour.) Hallier F.) tuber using UPLC-QToF-MS/MS. Biomedical and Pharmacology Journal, 15(4), 2025-2041 https://dx.doi.org/10.13005/bpj/2540

Purwitasari, N., Maulana, S., Qurnianingsih, E., Agil, M., Siswandono, S. & Junlatat, J. (2023). Inhibition of spike protein of SARS-CoV2 from (Merremia mammosa (Lour) Hall. F.) bioactive compounds: Molecular docking and ADMET study. Journal of Population Therapeutics and Clinical Pharmacology, 30(8), 78-86. https://doi.org/10.47750/jptcp.2023.30.08.009

Schrödinger Release 2022-1. (2022a). Glide. LLC (https://www.schrodinger.com/science-articles/protein-preparation-wizard)

Schrödinger Release 2022-1. (2022b). Prime. LLC.

Schrödinger Release 2022-1. (2022c). Protein preparation Wizard; Epik. LLC

World Health Organisation. (2020). WHO Coronavirus (COVID-19) dashboard. Retrieved May 5, 2023, from https://covid19.who.int/

Zubair, M.S., Maulana, S., Widodo, A., Pitopang, R., Arba, M. & Hariono, M. (2021). GC-MS, LC-MS/MS, docking and molecular dynamics approaches to identify potential SARS-CoV-2 3-chymotrypsin-like protease inhibitors from Zingiber officinale Roscoe. Molecules, 26(17), 5230. https://doi.org/10.3390/molecules26175230

Downloads

Published

10-10-2023

How to Cite

Purwitasari, N., Agil, M., Siswodihardjo, S., Maulana, S., & Zubair, M. S. (2023). The activity of bioactive compounds from bidara upas (Merremia mammosa (Lour) Hall. f.) as an inhibitor of SARS-CoV2 entry stage: In silico study. Pharmacy Education, 23(4), p. 340–343. https://doi.org/10.46542/pe.2023.234.340343

Issue

Section

Special Edition