The activity of bioactive compounds from bidara upas (Merremia mammosa (Lour) Hall. f.) as an inhibitor of SARS-CoV2 entry stage: In silico study
DOI:
https://doi.org/10.46542/pe.2023.234.340343Keywords:
ADMET, Merremia mammosa (Lour) Hall. f., Molecular docking, SARS-CoV2, TMPRSS2Abstract
Background: Covid 19 is a global pandemic caused by SARS-CoV2, a novel coronavirus. This virus enters target organ epithelial cells by utilising two host proteins; Transmembrane Serine Protease 2 (TMPRSS2) and Angiotensin Converting Enzyme 2 (ACE2). The inhibition of TMPRSS2 has shown to be a promising means to prevent viral infection. Molecular docking, and Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis will determine the activity of Merremia mammosa (Lour) Hall.f. secondary metabolites against the TMPRSS2 of SARS-CoV2.
Objective: This study aimed to investigate the in silico activity of Merremia mammosa (Lour) Hall.f. active compounds against TMPRSS2 of SARS-CoV2.
Method: Molecular docking was performed on 206 compounds obtained through metabolite profiling from a previous study on the SARS-CoV TMPRSS-2 protein (PDB id.7MEQ) using the Maestro Schrodinger software.
Result: The results indicated there were 6 compounds (three of which were flavonoids: cynarine, phellodensin F, and gemixanthone A) with docking scores lower than standard drugs (nafamostat as a native ligand). ADMET analysis revealed that among 6 compounds, cynarine has the highest drug-likeness and the greatest inhibitory potential against TMPRSS2.
Conclusion: Cynarine was found to be active and promising to be developed as an inhibitor of the SARS-CoV2 entry step.
References
Agil, M., Studiawan, H., & Purwitasari, N. (2021). Efficacy of Merremia mammosa Hall terpenoid fraction against Mycobacterium tuberculosis. Research Journal of Pharmacy and Technology, 14(12), 6617-6620. https://doi.org/10.52711/0974-360X.2021.01143
Hussain, M., Jabeen, N., Amanullah, A., Baig, A.A., Aziz, B., Shabbir, S., Raza F., & Uddin, N. (2020). Molecular docking between human TMPRSS2 and SARS-CoV-2 spike protein: Conformation and intermolecular interactions. AIMS Microbiology, 6(3), 350. https://doi.org/10.3934/microbiol.2020021
Ikram, N.K., Durrant, J.D., Muchtaridi, M., Zalaludin, A.S., Purwitasari, N., Mohamed, N., Rahim, A.S., Lam, C.K., Normi, Y.M., Rahman, N.A., Amaro, R.E., & Wahab, H.A. (2015). A virtual screening approach for identifying plants with anti-H5N1 neuraminidase activity. Journal of chemical information and modelling, 55(2), 308-316. https://doi.org/10.1021/ci500405g
Kitagawa, I., Baek, N. I., Yokokawa, Y., Yoshikawa, M., Ohashi, K., & Shibuya, H. (1996). Indonesian medicinal plants. XVI. Chemical structures of four new resin- glycosides, merremosides f, g, h1, and h2, from the tuber of Merremia mammosa (Convolvulaceae). Chemical and Pharmaceutical Bulletin, 44(9). https://doi.org/10.1248/cpb.44.1693
Jo, S., Signorile, L., Kim, S., Kim, M.S., Huertas, O., Insa, R., Reig N., & Shin, D.H. (2022). A study of drug repurposing to identify SARS-CoV-2 main protease (3CLpro) inhibitors. International Journal of Molecular Sciences, 23(12), 6468. https://doi.org/10.3390/ijms23126468
Manjunathan, R., Periyaswami, V., Mitra, K., Rosita, A.S., Pandya, M., Selvaraj, J., Ravi L., Devarajan N., & Doble, M. (2022). Molecular docking analysis reveals the functional inhibitory effect of Genistein and Quercetin on TMPRSS2: SARS-COV-2 cell entry facilitator spike protein. BMC Bioinformatics, 23(1), 180. https://doi.org/10.1186/s12859‑022‑04724‑9
Parmar, M. S. (2021). TMPRSS2: An equally important protease as ACE2 in the pathogenicity of SARS-CoV-2 infection. Mayo Clin Proc, 96(11), 2748-2752. https://doi.org/10.1016/j.mayocp.2021.07.005
Purwitasari, N., Agil, M., & Studiawan, H. (2020). Activity of ethyl acetate fraction of Merremia mammosa hall as anti-influenza a (H1N1). Indian Journal of Forensic Medicine & Toxicology, 14(3), 2095-2098.
Purwitasari, N. & Agil, M. (2022). Metabolite profiling of extract and fractions of bidara upas (Merremia mammosa (Lour.) Hallier F.) tuber using UPLC-QToF-MS/MS. Biomedical and Pharmacology Journal, 15(4), 2025-2041 https://dx.doi.org/10.13005/bpj/2540
Purwitasari, N., Maulana, S., Qurnianingsih, E., Agil, M., Siswandono, S. & Junlatat, J. (2023). Inhibition of spike protein of SARS-CoV2 from (Merremia mammosa (Lour) Hall. F.) bioactive compounds: Molecular docking and ADMET study. Journal of Population Therapeutics and Clinical Pharmacology, 30(8), 78-86. https://doi.org/10.47750/jptcp.2023.30.08.009
Schrödinger Release 2022-1. (2022a). Glide. LLC (https://www.schrodinger.com/science-articles/protein-preparation-wizard)
Schrödinger Release 2022-1. (2022b). Prime. LLC.
Schrödinger Release 2022-1. (2022c). Protein preparation Wizard; Epik. LLC
World Health Organisation. (2020). WHO Coronavirus (COVID-19) dashboard. Retrieved May 5, 2023, from https://covid19.who.int/
Zubair, M.S., Maulana, S., Widodo, A., Pitopang, R., Arba, M. & Hariono, M. (2021). GC-MS, LC-MS/MS, docking and molecular dynamics approaches to identify potential SARS-CoV-2 3-chymotrypsin-like protease inhibitors from Zingiber officinale Roscoe. Molecules, 26(17), 5230. https://doi.org/10.3390/molecules26175230