Development of nanoliposome formulation of beta-carotene using high speed homogeniser method

Authors

  • Lutfi Chabib Master of Pharmacy Study Program, Faculty of Mathematics and Science, Islamic University of Indonesia, Yogyakarta, Indonesia & Department of Pharmacy, Faculty of Mathematics and Science, Islamic University of Indonesia, Yogyakarta, Indonesia https://orcid.org/0000-0002-1250-1406
  • Fakhrul Hakim Ar Rodli Master of Pharmacy Study Program, Faculty of Mathematics and Science, Islamic University of Indonesia, Yogyakarta, Indonesia
  • Bambang Hernawan Nugroho Master of Pharmacy Study Program, Faculty of Mathematics and Science, Islamic University of Indonesia, Yogyakarta, Indonesia
  • Arman Suryani Department of Pharmacy, Faculty of Pharmacy, Sultan Agung Islamic University, Semarang, Indonesia
  • Ferdy Firmansyah Sekolah Tinggi Ilmu Farmasi Riau, Riau, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.242.18

Keywords:

Betacarotene, High speed homogeniser, Nanoliposome, Phospholipone 80H

Abstract

Background: Beta carotene has hydrophobic and unstable properties. Nanoliposomes can package various types of drugs, including hydrophilic and hydrophobic drugs, as well as biological substances such as DNA, RNA, and proteins. This allows for more efficient and targeted drug delivery, making it possible to formulate beta-carotene nanoliposomes to improve efficacy and stability.

Objective: To formulate and characterise betacarotene liposomes using high speed homogeniser method and to conduct an accelerated stability test on betacarotene liposomes produced using high speed homogeniser method.

Methods: Nanoliposomes were prepared by high speed homogeniser method with time variation of 3, 6, 9 and 12 minutes and characterised for particle size, zeta potential value, polydispersity index, encapsulation efficiency, and stability.

Results: The preparation of nanoliposomes produced a yellow, odourless suspension with antioxidant activity, with particle size characteristics measuring 200-300 nm, with a polydispersity index of 0.2-0.5 and potential zeta values ranging from -25 mV to -30 mV, encapsulation efficiency value of 97% and morphology of liposome particles in the form of spherical globules with 500x magnification.

Conclusion: Formulation with a time variation of 12 minutes has recommended characteristics with spherical shape having good particle size, polydispersity index value, zeta potential value and encapsulation efficiency value.

References

Abbasi, H., Kouchak, M., Mirveis, Z., Hajipour, F., Khodarahmi, M., Rahbar, N., & Handali, S. (2022). What we need to know about liposomes as drug nanocarriers: An updated review. Advanced Pharmaceutical Bulletin, 13(1), 7–23. https://doi.org/10.34172%2Fapb.2023.009

Aguilar-Pérez, K. M., Avilés-Castrillo, J. I., Medina, D. I., Parra-Saldivar, R., & Iqbal, H. M. N. (2020). Insight into nanoliposomes as smart nanocarriers for greening the twenty-first century biomedical settings. Frontiers Bioengineering and Biotechnology, 8, 579536. https://doi.org/10.3389/fbioe.2020.579536

Ali, M. S., Alam, M. S., Alam, N., Anwer, T., & Safhi, M. M. (2013). Accelerated stability testing of a clobetasol propionate-loaded nanoemulsion as per ICH guidelines. Scientia Pharmaceutica, 81(4), 1089–1100. https://doi.org/10.3797/scipharm.1210-02

Anand, R., Mohan, L., & Bharadvaja, N. (2022). Disease prevention and treatment using β-Carotene: The ultimate provitamin A. Revista Brasileira de Farmacognosia, 32, 491–501. https://doi.org/10.1007/s43450-022-00262-w

Chabib, L., Suryani, A., Dewi, L. S., Noviani, H., Maharani, W. H. P., & Indraswari, A. A. (2023). Pineapple fruit extract (Ananas comosus L. Merr) as an antioxidant and anti-acne agent made with the nano-emulsion gel delivery system. Pharmacy Education, 23(2), 126–132. https://doi.org/10.46542/pe.2023.232.126132

Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 57.

https://doi.org/10.3390/pharmaceutics10020057

Danish, M. K., Gleeson, J. P., Brayden, D. J., Byrne, H. J., Frías, J. M., & Ryan, S. M. (2022). Formulation, characterisation and evaluation of the antihypertensive peptides, isoleucine-proline-proline and leucine-lysine-proline in chitosan nanoparticles coated with zein for oral drug delivery. International journal of molecular sciences, 23(19), 11160. https://doi.org/10.3390/ijms231911160

Eugresya, G., Avanti, C., & Uly, S. A. (2018). Formula development and physical-pH stability test of facial wash gel preparations containing ethanol extract of kesambi bark. Media Pharmaceutica Indonesia, 1(4), 181–188. https://doi.org/10.24123/mpi.v1i4.769

Ghaferi, M., Asadollahzadeh, M. J., Akbarzadeh, A., Shahmabadi, H. E., & Alavi, S. E. (2020). Enhanced efficacy of PEGylated liposomal cisplatin: In vitro and in vivo evaluation. International Journal of Molecular Sciences, 21(2), 559. https://doi.org/10.3390/ijms21020559

Gomez, A. G., Syed, S., Marshall, K., & Hosseinidoust, Z. (2019). Liposomal nanovesicles for efficient encapsulation of staphylococcal antibiotics. ACS Omega, 4, 10866–10876. https://doi.org/10.1021/acsomega.9b00825

González-Peña, M. A., & Ortega-Regules, A. E. (2023). Chemistry, occurrence, properties, applications, and encapsulation of carotenoids—A Review. Plants (Basel, Switzerland), 12(2), 313. https://doi.org/10.3390/plants12020313

Khan, A. A., Allemailem, K. S., Almatroodi, S. A., Almatroudi, A., & Rahmani, A. H. (2020). Recent strategies towards the surface modification of liposomes: An innovative approach for different clinical applications. 3 Biotech, 10, 163. https://doi.org/10.1007/s13205-020-2144-3

Li, X., Wu, M., Xiao, M., Lu, S., Wang, Z., Yao, J., & Yang, L. (2019). Microencapsulated β-carotene preparation using different drying treatments. Journal of Zhejiang University-Science B, 20, 901–909. https://doi.org/10.1631/jzus.B1900157

Liu, P., Chen, G., & Zhang, J. (2022). A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules, 27(4), 1372. https://doi.org/10.3390/molecules27041372

Lombardo, D., & Kiselev, M. A. (2022). Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics, 14(3), 543. https://doi.org/10.3390/pharmaceutics14030543

Marjoni, M. R., & Zulfisa, A. (2017). Antioxidant activity of methanol extract/fractions of senggani leaves (Melastoma candidum D. Don). Pharmaceutica Analytica Acta, 8(8), 1000557. https://doi.org/10.4172/2153-2435.1000557

Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/10.3390/ijms22073380

Narsaiah, K., Jha, S. N., Mandge, H. M., Jha, J., & Manikanatan, M. R. (2014). Optimization of microcapsule production by air atomization technique using two-fluid nozzle. Agricultural Research, 3, 353–359. https://doi.org/10.1007/s40003-014-0123-9

Nugroho, B. H., Ningrum, A. D. K., Pertiwi, D. A., Salsabila, T., & Syukri, Y. (2020). Utilization of fig leaf extract (Ficus carica L.) based on liposome nanotechnology as an antihyperglycemia treatment. EKSAKTA: Journal of Sciences and Data Analysis, 19(2), 216–229. https://doi.org/10.20885/eksakta.vol19.iss2.art12

Pérez-Gálvez, A., Viera, I., & Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), 505. https://doi.org/10.3390/antiox9060505

Pratiwi, L., Fudholi, A., Martien, R., & Pramono, S. (2018). Physical and chemical stability test of SNEDDS (Self-nanoemulsifying drug delivery system) and nanoemulsion ethyl acetate fraction of Garcinia mangostana L. Majalah Obat Tradisional, 23(2), 84. https://doi.org/10.22146/mot.28533

Putri, D. C. A., Dwiastuti, R., Marchaban, M., & Nugroho, A. K. (2017). Optimization of mixing temperature and sonication duration in liposome preparation. Journal

Pharmaceutical Science Community, 14(2), 79–85. https://doi.org/10.24071/jpsc.142728

Rachmawati, H., Rahma, A., Shaal, L. A., Müller, R. H., & Keck, C. M. (2016). Destabilization mechanism of ionic surfactant on curcumin nanocrystal against electrolytes. Scientia Pharmaceutica, 84(4), 685-693. https://doi.org/10.3390/scipharm84040685

Rahman, H., Wisnuwardhani, H. A., & Rusnadi, R. (2021). Optimization of silver nanoparticle synthesis using kawista leaf extract (Limonia acidissima Groff). Jurnal Farmasi Klinik Dan Sains, 1(1), 31. https://doi.org/10.26753/jfks.v1i1.671

Ratnasari, D., & Anwar, E. (2016). Characterization of transfersome nanovesicles as “rutin” carriers in the development of transdermal preparations. Jurnal Farmamedika, 1(1), 12–18. https://doi.org/10.47219/ath.v1i1.40

Robson, A.-L., Dastoor, P. C., Flynn, J., Palmer, W., Martin, A., Smith, D. W., Woldu, A., & Hua, S. (2018). Advantages and limitations of current imaging techniques for characterizing liposome morphology. Frontiers in Pharmacology, 9, 328115. https://doi.org/10.3389/fphar.2018.00080

Sani, M. F. H., Setyowati, S., & Kadaryati, S. (2019). Effect of processing techniques on beta-carotene content in broccoli (Brassica oleracea L.). Ilmu Gizi Indonesia, 2(2), 133-140. https://ilgi.respati.ac.id/index.php/ilgi2017/article/download/108/40

Taléns-Visconti, R., Díez-Sales, O., de Julián-Ortiz, J. V., & Nácher, A. (2022). Nanoliposomes in cancer therapy: Marketed products and current clinical trials. International Journal of Molecular Sciences, 23(8), 4249. https://doi.org/10.3390/ijms23084249

Trucillo, P., Campardelli, R., & Reverchon, E. (2020). Liposomes: From Bangham to supercritical fluids. Processes, 8(9), 1022. https://doi.org/10.3390/pr8091022

Umbarkar, M., Thakare, S., Surushe, T., Giri, A., & Chopade, V. (2021). Formulation and evaluation of liposome by thin film hydration method. Journal of Drug Delivery & Therapeutics, 11(1), 72–76. https://doi.org/10.22270/jddt.v11i1.4677

Wibawa, A. A. C. (2021). Total antioxidant capacity of methanol extract of cocoa beans (Theobroma cacao. L) using Uv-Vis spectrophotometric method. Hydrogen Jurnal Kependidikan Kimia, 9(1), 30. https://doi.org/10.33394/hjkk.v9i1.3794

Zarrabi, A., Alipoor, M. A. A., M., Khorasani, S., Mohammadabadi, M.-R., Jamshidi, A., Torkaman, S., Taghavi, E., Mozafari, M. R., & Rasti, B. (2020). Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules, 25(3), 638. https://doi.org/10.3390/molecules25030638

Downloads

Published

01-04-2024

How to Cite

Chabib, L., Ar Rodli, F. H., Nugroho, B. H., Suryani, A., & Firmansyah, F. (2024). Development of nanoliposome formulation of beta-carotene using high speed homogeniser method. Pharmacy Education, 24(2), p. 1–8. https://doi.org/10.46542/pe.2024.242.18

Issue

Section

Special Edition