Formulation and evaluation of piperine-loaded ultra-small unilamellar carrier

Authors

  • Anugrah Putra Pharmaheri Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
  • Salman Umar Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia
  • Henny Lucida Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia https://orcid.org/0000-0002-1816-990X

DOI:

https://doi.org/10.46542/pe.2024.242.5257

Keywords:

Emulgel, Liposome, Nanotope, Piperine, Ultra-small unilamellar carrier

Abstract

Background: Piperine is an alkaloid that has a stimulatory effect on the proliferation and dentricity of melanocytes. Therefore, it is a potential drug for vitiligo.

Objectives: To formulate an Emulgel containing piperine-loaded Ultra-Small Unilamellar Carrier (USUC) with virgin coconut oil, soy lecithin and tween 80, and to evaluate the physicochemical properties.

Method: Piperine-loaded USUC was formulated using a spontaneous water phase titration method at a stirring speed of 1500 rpm for 15 minutes with a base composition of 2.3% oil phase, 1% surfactant and 2.3% co-surfactant. Emulgel preparations were made by mixing USUC piperine into a 5% carbopol base.

Result: Piperine-loaded USUC was obtained in the form of spherical globules with a Z-average size of 15.0 nm, a zeta potential of -39.5 mV and a polydispersion index of 0.312. The emulgel preparation has a pH of (6.5 ± 0.1), and a viscosity (of 44.800 ± 0.367) cP and is physically stable. Permeation of piperine from USUC emulgel follows zero-order kinetics (y = 0.130x-2.027; R2 = 0.9998) with a flux value of (3.408 ± 1.110) µg/cm2/hour, which is significantly different from permeation of non-USUC piperine gel (0.000 ± 0) µg/cm2/hour)(p <0.05).

Conclusion: Piperine-loaded USUC in emulgel formulation produced nanosized spherical globules, indicating a significantly different amount of permeated piperine compared to conventional piperine gel.

References

Barel, A. O., Paye, M., & Maibach, H. I. (2018). Handbook of cosmetic science and technology. CRC Press.

Baschong, W., Herzog, B., Artmann, C. W., Mendrok, C., Mongiat, S., & Lupia, J. A. (2005). NanotopesTM: A novel ultra-small unilamellar carrier system for cosmetic actives. William Andrew Inc.

Chairunisa, U., Rustini, Nastiti, C. M. R. R., Riswanto, F. D. O., Benson, H. A. E., & Lucida, H. (2022). A promising ultra-small unilamellar carrier system for enhanced skin delivery of α-mangostin as an anti-age-spot serum. Pharmaceutics, 14(12), 2741. https://doi.org/10.3390/pharmaceutics14122741.

Chin, G. S., Todo, H., Kadhum, W. R., Hamid, M. A., & Sugibayashi, K. (2016). In vitro permeation and skin retention of α-mangostin proniosome. Chemical and Pharmaceutical Bulletin, 64(12), 1666–1673, https://doi.org/10.1248/cpb.c16-00425.

Choi, D., Isedeh, P., & Hamzavi, I. (2014). Vitiligo: A review of the pathogenesis. Journal of the Egyptian Womenʼs Dermatologic Society, 11(3), 145–158. https://doi.org/10.1097/01.EWX.0000450307.76457.a3.

Đorđević, S. M., Santrač, A., Cekić, N. D., Marković, B. D., Divović, B., Ilić, T. M., Savić M. M., & Savić, S. D. (2017). Parenteral nanoemulsions of risperidone for enhanced brain delivery in acute psychosis: Physicochemical and in vivo performances. International Journal of Pharmaceutics, 533(2), 421–430. https://doi.org/10.1016/j.ijpharm.2017.05.051.

Feily, A. (2014). Vitiligo Extent Tensity Index (VETI) score: A new definition, assessment and treatment evaluation criteria in vitiligo. Dermatology Practical & Conceptual, 4(5), 81–84. https://doi.org10.5826/dpc.0404a18.

Ghanbarzadeh, B., Babazadeh, A., & Hamishehkar, H. (2016). Nano-phytosome as a potential food-grade delivery system. Food Biosciences, 15, 126–135, https://doi.org/10.1016/j.fbio.2016.07.006.

Kallay, N., & Žalac, S. (2002). Stability of nanodispersions: A model for kinetics of aggregation of nanoparticles. Journal of Colloidal Interface Sciences, 253(1), 70–76, https://doi.org/10.1006/jcis.2002.8476.

Lin, Z., Hoult, J. R., Bennett, D. C., & Raman, A. (1999). Stimulation of mouse melanocyte proliferation by Piper nigrum fruit extract and its main alkaloid, piperine. Planta Medica, 65(7), 600–603. https://doi.org/10.1055/s-1999-14031.

Lotti, T., & D’Erme, A. M. (2014). Vitiligo as a systemic disease. Clinics in Dermatology, 32(3), 430–434. https://doi.org/10.1016/j.clindermatol.2013.11.011.

Lucida, H., Hasani, S., Susanti, M., & Ismed, F. (2023). Formulation of a gambier catechin-loaded nanophytosome and the MTT assay on HeLa celllines. Pharmacy Education, 23(2), 19–24. https://doi.org/10.46542/pe.2023.232.1924.

Ozkan, B., Alluntas, E., Koc, R. C., & Budama-Kilinc, Y. (2022). Development of piperine nanoemulsions: An alternative topical application for hypopigmentation. Drug Development and Industrial Pharmacy, 48(3), 117–127. https://doi.org/10.1080/03639045.2022.2100901.

Parmar, V. S., Jain, S. C., Bisht, K. S., Jain, R., Taneja, P., Jha A., Tyagi, O. D., Prasad, A., Wengel, J., Olsen, C. E., & Boll, P. M. (1997). Phytochemistry of genus Piper. Phytochemistry, 46(4), 597–673. https://doi.org/10.1016/S0031-9422(97)00328-2

Shao, B., Cui, C., Ji, H., Tang, J., Wang, Z., Liu, H., Qin, M., Li, X., & Wu, L. (2014). Enhanced oral bioavailability of piperine by self-emulsifying drug delivery systems: In vitro, in vivo and in situ intestinal permeability studies. Drug Delivery, 22(6), 740–747. https://doi.org/10.3109/10717544.2014.898109.

Thakker, K. D., & Chern, W. H. (2003). Development and validation of in vitro release tests for semisolid dosage forms—Case study. Dissolution Technologies, 10(2), 10–15. https://doi.org/10.14227/DT100203P10.

Venkatasamy, R., Faas, L., Young, A. R., Raman, A., & Hider, R. C. (2004). Effects of piperine analogues on stimulation of melanocyte proliferation and melanocyte differentiation. Bioorganic and Medicinal Chemistry, 12(8), 1905–1920. https://doi.org/10.1016/j.bmc.2004.01.036.

Wdowiak, K., Miklaszewski, A., Pietrzak, R., & Cielecka-Piontek, J. (2023). Amorphous system of hesperetin and piperine-improvement of apparent solubility, permeability, and biological activities. International Journal of Molecular Sciences, 24(5), 4859. https://doi.org/10.3390/ijms24054859.

Zafar, A., Imam, S. S., Alruwaili, N. K., Alsaidan, O. A., Elkomy, M. H., Ghoneim, M. M., Alshehri, S., Ali, A. M. A., Alharbi, K. S., & Yasir, M. (2021). Development of piperine-loaded solid self nanoemulsifying drug delivery system: Optimization, in-vitro, ex-vivo, and in-vivo evaluation. Nanomaterials, 11(11), 2920. https://doi.org/10.3390/nano11112920

Downloads

Published

01-04-2024

How to Cite

Pharmaheri, A. P., Umar, S., & Lucida, H. (2024). Formulation and evaluation of piperine-loaded ultra-small unilamellar carrier . Pharmacy Education, 24(2), p. 52–57. https://doi.org/10.46542/pe.2024.242.5257

Issue

Section

Special Edition