Synthesis, and molecular docking of thiourea derivatives as antibacterial agents targeting enzymes involved in biosynthesis of bacterial cell wall
DOI:
https://doi.org/10.46542/pe.2024.242.7177Keywords:
Antibacterial, Docking, Synthesis, Thiourea derivativeAbstract
Background: New antibacterials are needed due to the increasing resistance of bacteria to existing antibiotics. Thiourea derivative compounds (benzoylthiourea and 1,3-dibenzoylthiourea) contain aromatic groups, thio groups (C=S), and amide groups (H2N-C=O), which are commonly found in the class of antibacterial drugs. Molecular docking can be used to predict their antibacterial activity.
Objective: This study aimed to synthesise thiourea derivatives and predict their antibacterial activity by in silico method.
Methods: Synthesis was performed using nucleophilic substitution reactions. The synthesised compounds were identified using UV-Vis, FT-IR, and 1H-NMR. Molecular docking was conducted using the MOE program ver 2022.02.
Results: Benzoylthiourea (BTU) and 1,3-dibenzoylthiourea (DBTU) compounds were obtained with yields of 36.55% and 12.68%, respectively. The melting point 171-173°C for BTU and 202-204°C for DBTU. Molecular docking results showed higher binding affinity of DBTU against PBP2a (docking score < -5.75 kcal/mol) and FaBH (docking score <-4.7935 kcal/mol) compared to the corresponding native ligands, while the two compounds had lower affinity for the muramyl ligase.
Conclusion: BTU and DBTU can be synthesised by nucleophilic substitution reactions. DBTU is predicted to exhibit antibacterial activity against Methicilin Resistant Staphylococcus aureus (MRSA) and Mycobacterium tuberculosis.
References
Ajani, O. O., Akande, M. M., October, N., Siyanbola, T.O., Aderohunmu, D.V., & Akinsiku, A. A. ( 2019). Microwave-assisted synthesis, characterization, and investigation of antibacterial activity of 3-(5-(Substituted-phenyl-4,5-dihydro-1H-pyrazol-3-yl)2H-Chromen-2-one derivatives. Arabian Journal of Basic and Applied Sciences, 26(1), 362‒375. https://doi.org/10.1080/25765299.2019.1632141
Basu, S., Barawkar, D. A., & Ramdas, V. (2017). A2B adenosine receptor antagonists: Design, synthesis and biological evaluation of novel xanthine derivatives. European Journal of Medicinal Chemistry, 127, 986‒996. https://doi.org/10.1016/j.ejmech.2016.11.007
Carmen, L., Mariana, C. C., Miron, T. C., Florea, D., Marilena, F., Lucia, P., Amalia, S., Hinca, M. V., Coralia, B., Luminita, G. M., & Diana, C. N. (2020). New substituted benzoylthiourea derivatives: From design to antimicrobial applications. Molecules, 25(1478), 1‒20. https://doi.org/10.3390/molecules25071478
Carreto, E., Visiello, R., & Nardini, P. (2018). Methicillin resistance in Staphylococcus aureus. Science Direct Journal & Books. Academic Press. 225‒235. https://doi.org/10.1016/B978-0-12-813547-1.00017-0
Catalano, A., Lacopetta, D., Ceramella, J., Scumaci, D., Giuzio, F., Saturnino, C., Aquaro, S., Rosano, & Sinicropi, M. S., (2022). Multidrug Resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules, 27(3), 616. https://doi.org/10.3390/molecules27030616
Elkanzi, Nadia A. A., Hrichi, H., Alolayan, R. A., Derafa W., Zahou, F. M., & Bak, R. B. (2022). Synthesis of Chalcones Derivatives and Their Biological Activities: A Review. ACS.Omega, 7, 27769−2778. https://doi.org/10.1021/acsomega.2c01779
El Maatougui, A., Azuaje, J., & González-Gómez, M. (2016). Discovery of potent and highly selective A2B adenosine receptor antagonist chemotypes. Journal of Medicinal Chemistry, 59, 1967–1983. https://doi.org/10.1021/acs.jmedchem.5b01586
Fernandes, P., & Martens, E. (2017). Antibiotics in late clinical development. Biochemistry Pharmacology, 133, 152–163. https://doi.org/10.1016/j.bmc.2016.11.046
Furniss, B. S., Hannaford, A. J., Smith, P. W. G., & Tatchell, A. R. (1989). Vogel’s textbook of practical organic chemistry, 5th Edition. Longman.
George, S., Basheer, R. M., Ram, S. V., Selvaraj, S. K., & Rajan. (2014). Design docking, synthesis, and anti E.coli screening of novel thiadiazole thiourea derivatives as possible inhibitors of enoyl ACP reductase (Fabl) enzyme. Bangladesh Journal Pharmacological, 9, 49‒53. https://www.banglajol.info/index.php/BJP/article/view/16992/25076
Halim, A. N. A., & Ngaini, Z. (2016), Synthesis and bacteriostatic activities of bis(thiourea) derivatives with variable chain length. Journal of Chemistry, 2016, 1‒7. http://dx.doi.org/10.1155/2016/2739832
Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. ( 2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, 3(11), 935‒949. https://doi.org.10.1038/nrd1549
Kumar, N., Srivastava, R., Mongre, R. J., Mishra, C. B., Kumar, A., Khatoon, R., Banerjee, A., Ashraf-Uz-Zaman, M., Singh, H., Lynn, A. M., Lee, M. S., & Amresh Prakas, A. (2022). Identifying the novel inhibitors against the mycolic acid biosynthesis pathway target “mtFabH” of Mycobacterium tuberculosis. Frontiers in Microbiology, 13, 1‒15. https://doi.org/10.3389/fmicb.2022.818714
Luzio, V. M., Cristiane, J. S., Debora, S. B., & Izabel, S. C. (2018). A mini-review on what we have learned about urease inhibitors of agricultural interest since the mid-2000s. Journal of Advanced Research, 13, 29‒37. https://doi.org/10.1016/j.jare.2018.04.001
McMurry, J. (2008). Organic Chemistry 7th Edition. Thomson Learning Inc.
Merkl, R., Hradkova, L., Filip, V., & Smidrkal, J., (2010). Antimicrobial and antioxidant properties of phenolic acids alkyl esters. Czech Journal Food Science, 28(4), 275‒279. https://doi.org/10.17221/132/2010-CJFS
Ministry of Health of the Republic of Indonesia. (2011). General guidelines for the use of antibiotics. https://farmalkes.kemkes.go.id/2014/03/pedoman-umum-penggunaan-antibiotik/#
Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2009). Introduction to spectroscopy. 4th Edition Brooks/Cole.
Pulingam, T., Parumasivam, T., Gazzali, A.M., Sulaiman, A.M., Chee, J. Y., Lakshmanan, M., Chin, C.F., & Sudesh, K. 2022. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Europen Journal of Pharmaceutical Sciences, 170, 106103. https://doi.org/10.1016/j.ejps.2021.106103
Rani, N., Kumar, C., Arunacallam, A., & Laksmi, P. (2018). Rutin as a potential inhibitor to target the peptidoglycan pathway of Staphylococcus aureus cell wall synthesis. Clinical Microbiology Infectious Diseases, 3(3), 1‒9. https://doi.org/10.15761/CMID.1000142
Saha, M., & Sarkar, A. (2021). Review on multiple facets of drug resistance: A rising challenge in the 21st century. Journal of Xenobiotics, 11(4), 197–214. https://doi.org/10.3390/jox11040013
Samir, Y. A., Reem, A. K. A., & Marwa, A. M. S. (2020). Synthesis and anticancer activity of thiourea derivatives bearung a benzodioxole moiety with EGFR inhibitory activity, apoptosis assay and moleculardocking study. European Journal of Medicinal Chemistry, 198, 1‒9. https://doi.org/10.1016/j.ejmech.2020.112363
Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2005). Spectrofotometric Identification of Organic Compound, 7th Edition. John Wiley and Sons, Inc.
Solomons, G. T. W., & Fryhile, C. B. (2011). Organic Chemistry, 10th ed. John Willey & Sons Inc.
Wei, Y., Qianqian, F., Zhiyun, P., & Guangcheng, W. (2022). An overview on the synthetic urease inhibitors with structure-activity relationship and molecular docking. European Journal of Medicinal Chemistry, 234(114273), 1‒14. https://doi.org/10.1016/j.ejmech.2022.114273
Xiong, X., Liu, H., Fu, L., Li, L., Li, J., Luo, X., & Mei, C. (2008). Antitumor activity of a new N-substituted thiourea derivative, an EGFR signaling-targeted inhibitor against a panel of human lung cancer cell lines. Chemotherapy, 54(6), 463–474. https://doi.org/10.1159/000159272
Young, D. C. ( 2009). Computational drug design, A guide for computational and medicinal chemists. John Wiley and Son.