Quantitative analysis of flavonoids and phenolics extracted from Diplazium esculentum (Retz.) Sw. for their anti-hyperglycemic potential

Authors

  • Silvera Devi Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia
  • Tiara Mulyani Rambah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia
  • Mhd. Muslim Syaifullah Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia
  • Mukhlis Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia
  • Itnawita Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia
  • Rudi Hendra Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia https://orcid.org/0000-0002-1103-8261

DOI:

https://doi.org/10.46542/pe.2024.242.4651

Keywords:

D. esculentum, Flavonoid, Hyperglycemia, Phenolic

Abstract

Background: Hyperglycemia arises from excessive blood glucose due to starch hydrolysis by α-amylase and α-glucosidase. Drugs like acarbose inhibit these enzymes to manage hyperglycemia, but long-term use poses risks. Fern species Diplazium esculentum metabolites show promise as acarbose alternatives.

Methods: Sequential extraction of secondary metabolites from D. esculentum involved solvents in successive stages: hexane, ethyl acetate, and water. Subsequently, an assessment of phenolic and flavonoid concentrations within the ethyl acetate and aqueous extracts was conducted. Furthermore, the investigation encompassed the evaluation of % inhibition and IC50 values pertaining to the activities of α-amylase and α-glucosidase.

Results: The findings indicated that the flavonoid concentrations in the ethyl acetate and aqueous extracts were 146.90 ± 27.20 µg quercetin equivalent per gram of fresh weight (eq./g FW) and 101.95 ± 40.62 µg quercetin eq./g FW, respectively. In terms of total phenolic content, the ethyl acetate extract contained 121.25 ± 8.29 µg of gallic acid eq./g FW, whereas the aqueous extract had 109.90 ± 7.22 µg gallic acid eq./g FW. The IC50 values demonstrated that the aqueous extract had moderate inhibitory effects on α-amylase with a value of 108.05 µg/mL, while acarbose exhibited very strong inhibition with a value of 3.12.

Conclusion: Ferns are relatively ineffective in treating hyperglycemia.

References

Almurdani, M., Zamri, A., Nugroho, T. T., Karim, J., Eryanti, Y., Hendra, R., & Teruna, H. Y. (2020). Antioxidant and Antidiabetic Activities of Mempening (Lithocarpus bancanus) Leaves. Pharmacognosy Journal, 12(2). http://dx.doi.org/10.5530/pj.2020.12.52

Ardiany, D., Pranoto, A., Soelistijo, S. A., Libriansyah, & Widjaja, S. A. (2021). Association between neutrophil–lymphocyte ratio on arterial stiffness in type-2 diabetes mellitus patients: a part of DiORS Study. International Journal of Diabetes in Developing Countries, 1(8). https://doi.org/10.1007/s13410-021-00965-1

Cao, H., Chai, T. T., Wang, X., Morais-Braga, M. F. B., Yang, J. H., Wong, F. C., Cornara, L. (2017). Phytochemicals from fern species: Potential for medicine applications. Phytochemistry Reviews, 16, 379‒440. https://doi.org/10.1007/s11101-016-9488-7

Chai, T. T., Yeoh, L. Y., Ismail, N. M., Ong, H. C., Manan, F. A., & Wong, F. C. (2015). Evaluation of glucosidase inhibitory and cytotoxic potential of five selected edible and medicinal ferns. Tropical Journal of Pharmaceutical Research, 14(3), 449‒454. https://doi.org/10.4314/tjpr.v14i3.13

Chang, C., Yang, M., Wen, H., & Chern, J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178‒182. https://doi.org/10.38212/2224-6614.2748

Ćorković, I., Gašo-Sokač, D., Pichler, A., Šimunović, J., & Kopjar, M. (2022). Dietary polyphenols as natural inhibitors of α-amylase and α-glucosidase. Life, 12(11), 1692. https://doi.org/10.3390/life12111692

El Ridhasya, F., Rahim, N., Almurdani, M., Hendra, R., & Teruna, H. Y. (2020). Antidiabetic constituents from Helminthostachys zeylanica (L) Hook (Ophioglossaceae). Pharmacognosy Journal, 12(2). http://dx.doi.org/10.5530/pj.2020.12.33

Hendra, R., Masdeatresa, L., Abdulah, R., & Haryani, Y. (2020). Red dragon peel (Hylocereus polyrhizus) as antioxidant source. Paper presented at the AIP Conference Proceedings. https://doi.org/10.1063/5.0001391

Iloki-Assanga, S. B., Lewis-Luján, L. M., Lara-Espinoza, C. L., Gil-Salido, A. A., Fernandez-Angulo, D., Rubio-Pino, J. L., & Haines, D. D. (2015). Solvent effects on phytochemical constituent profiles and antioxidant activities, using four different extraction formulations for analysis of Bucida buceras L. and Phoradendron californicum. BMC research notes, 8(1), 1‒14. https://doi.org/10.1186/s13104-015-1388-1

Kaur, N., Kumar, V., Nayak, S. K., Wadhwa, P., Kaur, P., & Sahu, S. K. (2021). Alpha‐amylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chemical Biology & Drug Design, 98(4), 539‒560. https://doi.org/10.1111/cbdd.13909

Khodijah, R., Haryani, Y., Teruna, H. Y., & Hendra, R. (2023). Antibacterial properties of Pyrrosia longifolia extracts. Pharmacy Education, 2023(2). https://doi.org/10.46542/pe.2023.232.168173

Khodijah, R., Teruna, H. Y., & Hendra, R. (2022). Antioxidant and α-Glucosidase inhibition of Pyrrosia longifolia extracts. Pharmacy Education, 22(2), 16‒19. https://doi.org/10.46542/pe.2022.222.1619

Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R., & Lyng, J. (2021). Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry, 338, 128119. https://doi.org/10.1016/j.foodchem.2020.128119

Rosak, C., & Mertes, G. (2012). Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes, metabolic syndrome and obesity: targets and therapy, 5, 357‒367. https://doi.org/10.2147/DMSO.S28340

Rover, M. R., & Brown, R. C. (2013). Quantification of total phenols in bio-oil using the Folin–Ciocalteu method. Journal of Analytical and Applied Pyrolysis, 104, 366‒371. https://doi.org/10.1016/j.jaap.2013.06.011

Santoso, M., Ong, L. L., Aijijiyah, N. P., Wati, F. A., Azminah, A., Annuur, R. M., Judeh, Z. M. (2022). Synthesis, α-glucosidase inhibition, α-amylase inhibition, and molecular docking studies of 3, 3-di (indolyl) indolin-2-ones. Heliyon, 8(3). https://doi.org/10.1016/j.heliyon.2022.e09045

Semwal, P., Painuli, S., Painuli, K. M., Antika, G., Tumer, T. B., Thapliyal, A., Taheri, Y. (2021). Diplazium esculentum (Retz.) Sw.: Ethnomedicinal, phytochemical, and pharmacological overview of the Himalayan ferns. Oxidative Medicine and Cellular Longevity, 2021. https://doi.org/10.1155/2021/1917890

Downloads

Published

01-04-2024

How to Cite

Devi, S., Rambah, T. M., Syaifullah, M. M., Mukhlis, Itnawita, & Hendra, R. (2024). Quantitative analysis of flavonoids and phenolics extracted from Diplazium esculentum (Retz.) Sw. for their anti-hyperglycemic potential. Pharmacy Education, 24(2), p. 46–51. https://doi.org/10.46542/pe.2024.242.4651

Issue

Section

Special Edition