Impact of a diet rich in carbohydrates, fats, and fructose on insulin resistance development
DOI:
https://doi.org/10.46542/pe.2024.242.121126Keywords:
Carbohydrate, Fat, Fructose, Insulin resistance, Insulin tolerance test, Pancreatic beta cellAbstract
Background: Insulin resistance can be caused by carbohydrates, fats, and fructose. Insulin resistance is defined as a decrease in insulin's ability to stimulate the use of glucose for distribution to other parts of the body or a decrease in organ/cell response (fat tissue, liver, and muscle) to insulin.
Aim: The goal of this study is to see how different diets high in fat, carbohydrates, and fructose affect the incidence of insulin resistance.
Methods: The study was conducted for 60 days and used 24 male white rats (Rattus norvegicus) Wistar strain aged two months with 180-200 grams body weight. They were divided into four groups, namely the normal group, the high-carbohydrate-fat (CF) diet group, the Carbohydrate-Fat-Fructose (CFF) and the Carbohydrate-fat-Fructose-Drink (CFFD) diet group. Blood glucose levels, the oral glucose tolerance test (ITT), and histological features of pancreatic beta cells were all measured.
Results: The CFF group had the highest blood glucose level of 111.25 mg/dl and the highest insulin resistance with an ITT value of 2.81, while the CF group had pancreatic beta cell (β) necrosis.
Conclusion: According to the findings of this study, the CFF group had insulin resistance, while the CF group had pancreatic beta cell necrosis.
References
Adriawan, I. R., Andrie, M., Susilowati, R., Pramono, S., & Nugroho, A. E. (2014). HOMA-IR index evaluation on antidiabetes mellitus effect of Andrographis paniculata (burm. f.) nees purified extract and andrographolide. Majalah Obat Tradisional, 19(1), 19‒23. https://doi.org/https://doi.org/10.22146/tradmedj.8086
Alberti, G., Zimmet, P., Shaw, J., & Grundy, S. M. (2018). The IDF consensus worldwide definition of the metabolic syndrome. Brussels: International Diabetes Federation, 23(5), 469‒480.
Castro, A. V. B., Kolka, C. M., Kim, S. P., & Bergman, R. N. (2014). Obesity, insulin resistance and comorbidities–Mechanisms of association. Arquivos Brasileiros de Endocrinologia & Metabologia, 58, 600‒609. https://doi.org/https://doi.org/10.1590/0004-2730000003223
Donath, M. Y., Ehses, J. A., Maedler, K., Schumann, D. M., Ellingsgaard, H., Eppler, E., & Reinecke, M. (2005). Mechanisms of β-cell death in type 2 diabetes. Diabetes, 54(suppl_2), S108‒S113. https://doi.org/https://doi.org/10.2337/diabetes.54.suppl_2.S108
Freeman, A. M., Acevedo, L. A., & Pennings, N. (2023). Insulin resistance. In StatPearls. StatPearls Publishing LLC.
Hermawati, C. M., Sitasiwi, A. J., & Jannah, S. N. (2020). Histology study of white rat pancreas (Rattus Norvegicus L.) induced by pineapple peel vinegar (Ananas Comosus L. Merr). Jurnal Pro-Life, 7(1), 61‒70. https://doi.org/ https://doi.org/10.33541/jpvol6Iss2pp102
Jastreboff, A. M., Sinha, R., Arora, J., Giannini, C., Kubat, J., Malik, S., . . . Duran, E. J. (2016). Altered brain response to drinking glucose and fructose in obese adolescents. Diabetes, 65(7), 1929‒1939. https://doi.org/https://doi.org/10.2337/db15-1216
Mathew, T. K., & Tadi, P. (2020). Blood glucose monitoring. StatPearls Publishing LLC.
Samsuri, D. A., Samsuri, S., & Kendran, A. A. S. (2020). Blood glucose level of white mice (Rattus Norvegicus) induced by yeast. Indonesia Medicus Veterinus, 9(4), 531–539. https://doi.org/https://Doi.Org/10.19087/Imv.2020.9.4.531
Sulaeman, A., Mardianni, A., Yuniarto, A., Putra, M. Y., & Bayu, A. (2022). Effects of a combination of Sauropus androgynus L. leaf and Zingiber Ottensii rhizome on fatty acid profile and liver damage in rats. Pharmacy Education, 22(2), 9‒15. https://doi.org/Https://Doi.Org/10.46542/Pe.2022.222.915
Sunehag, A. L., Toffolo, G., Campioni, M., Bier, D. M., & Haymond, M. W. (2008). Short-term high dietary fructose intake had no effects on insulin sensitivity and secretion or glucose and lipid metabolism in healthy, obese adolescents. Journal of Pediatric Endocrinology and Metabolism, 21(3), 225‒236. https://doi.org/https://doi.org/10.1515/JPEM.2008.21.3.225
Susilawati, E. (2019). Antidiabetic activity of kerehau leaf ethanol extract (Callicarpa Longifolia Lamk.). Jurnal Ilmiah Farmasi Farmasyifa, 2(1), 1‒7. https://doi.org/https://dx.doi.org/10.29313/jiff.v2i1.4059