Andrographolide exerts an anxiolytic-like effect possibly via regulation of the hypothalamic-orexinergic system

Authors

  • I Nengah Budi Sumartha Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0009-0008-2509-6930
  • Pingkan Aprilia Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0003-1824-9771
  • Muhammad Hilal Salim Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Linda Wiwid Kurniasari Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Ghaliya Afra Yasmine Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Mahardian Rahmadi Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia & Biomedical Pharmacy Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Muhammad Zaki Bin Ramli Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL RCMP), Malaysia https://orcid.org/0000-0002-6027-2716
  • Amar Daud Iskandar Abdullah Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
  • Junaidi khotib Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia & Biomaterial & Translational Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0002-8468-8441
  • Chrismawan Ardianto Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia & Biomedical Pharmacy Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.243.1218

Keywords:

Andrographolide, Anxiety, Mental health, Orexinergic

Abstract

Background: Anxiety is a psychiatric disorder that causes many problems in life such as poor concentration, sleep disturbance, and feelings of unease to anticipate future threats. The hypothalamus is a part of the limbic system that regulates stress. The orexinergic system, naturally produced in the hypothalamus, is associated with anxiety and depression which is induced by stress. Andrographolide has antioxidants and anti-inflammation properties that are possibly effective in preventing stress-induced anxiety.

Objective: This study was designed to investigate the effect of andrographolide on anxiety-like behaviour and orexinergic systems.    

Method: The ddY strain mice were exposed to electrical footshock stress for five days. The light was used as a contextual fear conditioning during stress exposure. Exactly 50 mg/kg of Andrographolide was given intraperitoneally, along with stress induction. The anxiety-like behaviour was investigated using two approaches: the duration of the freezing behaviour and the mice’s natural aversion to exploring open space. The hypothalamus was collected to examine the orexinergic systems.    

Result: Stress induction developed an anxiety-like behaviour in mice while administering andrographolide attenuated this effect. Additionally, andrographolide administration stimulated the hypothalamic orexinergic system.    

Conclusion: Andrographolide exerts an anxiolytic effect possibly via regulation of the hypothalamic orexinergic system.

References

Abedi, Z., Basri, H., Hassan, Z., Mat, L. N. I., Khaza’ai, H., & Mohamad, N. A. (2021). A review of the neuroprotective effects of andrographolide in Alzheimer's disease. Advances in Traditional Medicine, 21, 253‒266. https://doi.org/10.1007/s13596-021-00573-8

Anggreini, P., Ardianto, C., Rahmadi, M., & Khotib, J. (2019). Quercetin attenuates acute predator stress exposure-evoked innate fear and behavioural perturbation. Journal of basic and clinical physiology and pharmacology, 30(6). https://doi.org/10.1515/jbcpp-2019-0242

Ardianto, C., Budiatin, A. S., Sumartha, I. N. B., Nurrahmi, N., Rahmadi, M., & Khotib, J. (2021). Resveratrol ameliorates physical and psychological stress-induced depressive-like behaviour. Journal of basic and clinical physiology and pharmacology, 32(4), 335–340. https://doi.org/10.1515/jbcpp-2020-0437

Biltz, R. G., Sawicki, C. M., Sheridan, J. F., & Godbout, J. P. (2022). The neuroimmunology of social-stress-induced sensitization. Nature Immunology, 23(11), 1527–1535. https://doi.org/10.1038/s41590-022-01321-z

Boi, C., & Llera, S. J. (2023). Contrast avoidance prospectively mediates the effects of fear of emotional responding, negative problem orientation, and sensitivity to low perceived control on generalized anxiety disorder symptoms. Journal of anxiety disorders, 95, 102682. https://doi.org/10.1016/j.janxdis.2023.102682

Charpentier, C. J., Hindocha, C., Roiser, J. P., & Robinson, O. J. (2016). Anxiety promotes memory for mood-congruent faces but does not alter loss aversion. Scientific reports, 6, 24746. https://doi.org/10.1038/srep24746

Chen, X., Wang, H., Lin, Z., Li, S., Li, Y., Bergen, H. T., Vrontakis, M. E., & Kirouac, G. J. (2014). Orexins (hypocretins) contribute to fear and avoidance in rats exposed to a single episode of footshocks. Brain structure & function, 219(6), 2103–2118. https://doi.org/10.1007/s00429-013-0626-3

COVID-19 Mental Disorders Collaborators (2021). Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet (London, England), 398(10312), 1700–1712. https://doi.org/10.1016/S0140-6736(21)02143-7

Daviu, N., Bruchas, M. R., Moghaddam, B., Sandi, C., & Beyeler, A. (2019). Neurobiological links between stress and anxiety. Neurobiology of stress, 11, 100191. https://doi.org/10.1016/j.ynstr.2019.100191

de Oliveira, C., Saka, M., Bone, L., & Jacobs, R. (2023). The role of mental Health on workplace productivity: A critical review of the literature. Applied health economics and health policy, 21(2), 167–193. https://doi.org/10.1007/s40258-022-00761-w

Duguay, D., Bélanger-Nelson, E., Mongrain, V., Beben, A., Khatchadourian, A., & Cermakian, N. (2011). Dynein light chain Tctex-type 1 modulates orexin signalling through its interaction with the orexin 1 receptor. PloS one, 6(10), e26430. https://doi.org/10.1371/journal.pone.0026430

Gong, P., Zhang, W., Zou, C., Han, S., Tian, Q., Wang, J., He, P., Guo, Y., & Li, M. (2022). Andrographolide attenuates blood-brain barrier disruption, neuronal apoptosis, and oxidative stress through activation of Nrf2/HO-1 signalling pathway in subarachnoid haemorrhage. Neurotoxicity research, 40(2), 508–519. https://doi.org/10.1007/s12640-022-00486-7

Han, X., Song, X., Song, D., Xie, G., Guo, H., Wu, N., & Li, J. (2022). Comparison between cannabidiol and sertraline for the modulation of post-traumatic stress disorder-like behaviours and fear memory in mice. Psychopharmacology, 239(5), 1605–1620. https://doi.org/10.1007/s00213-022-06132-6

Hartini, Y. S., Setyaningsih, D., Chang, M. J. V., & Nugrahanti, M. C. I. A. (2021). Sambiloto (Andrographis paniculata Nees) leaf extract activity as an α-Amylase enzyme inhibitor. Pharmacy Education Journal, 21(2), 305–308. https://doi.org/10.46542/pe.2021.212.305308

Isiogugu, O. N., Anosike, C., Okoye, C. R., & Mmirikwe, I. J. (2022). Pharmacy students' perceptions of the impact of mental disorders on pharmacy education in Nigeria. Pharmacy Education Journal, 22(1), 323–330. https://doi.org/10.46542/pe.2022.221.323330

Katzman, M. A., & Katzman, M. P. (2022). Neurobiology of the orexin system and its potential role in the regulation of hedonic tone. Brain sciences, 12(2), 150. https://doi.org/10.3390/brainsci12020150

Knight, P., Chellian, R., Wilson, R., Behnood-Rod, A., Panunzio, S., & Bruijnzeel, A. W. (2021). Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharmacology, biochemistry, and behaviour, 204, 173168. https://doi.org/10.1016/j.pbb.2021.173168

Li, B., Chang, L., & Peng, X. (2021). Orexin 2 receptor in the nucleus accumbens is critical for the modulation of acute stress-induced anxiety. Psychoneuroendocrinology, 131, 105317. https://doi.org/10.1016/j.psyneuen.2021.105317

Li, X., Yuan, W., Wu, J., Zhen, J., Sun, Q., & Yu, M. (2022). Andrographolide, a natural anti-inflammatory agent: An Update. Frontiers in pharmacology, 13, 920435. https://doi.org/10.3389/fphar.2022.920435

Liu, N., Han, Y., Ding, H., Huang, K., Wei, P., & Wang, L. (2021). Objective and comprehensive re-evaluation of anxiety-like behaviours in mice using the Behaviour Atlas. Biochemical and biophysical research communications, 559, 1–7. https://doi.org/10.1016/j.bbrc.2021.03.125

Mitsukawa, K., & Kimura, H. (2022). Orexin 2 receptor (OX2R) protein distribution measured by autoradiography using radio-labelled OX2R-selective antagonist EMPA in rodent brain and peripheral tissues. Scientific reports, 12(1), 8473. https://doi.org/10.1038/s41598-022-12601-x

Prajapati, S. K., & Krishnamurthy, S. (2021). Non-selective orexin-receptor antagonist attenuates stress-re-stress-induced core PTSD-like symptoms in rats: Behavioural and neurochemical analyses. Behavioural brain research, 399, 113015. https://doi.org/10.1016/j.bbr.2020.113015

Rahem, A., Syahrir, A., Ismail, H., & Hermansyah, A. (2022). Revisiting early online learning experiences amid the COVID-19 pandemic in Indonesia: Benefits, barriers, and impact on pharmacy student learning outcomes. Pharmacy Education Journal, 22(1), 989–996. https://doi.org/10.46542/pe.2022.221.989996

Russell, G., & Lightman, S. (2019). The human stress response. Nature Reviews Endocrinology, 15, 525–534. https://doi.org/10.1038/s41574-019-0228-0

Sargin D. (2019). The role of the orexin system in stress response. Neuropharmacology, 154, 68–78. https://doi.org/10.1016/j.neuropharm.2018.09.034

Staton, C. D., Yaeger, J. D. W., Khalid, D., Haroun, F., Fernandez, B. S., Fernandez, J. S., Summers, B. K., Summers, T. R., Sathyanesan, M., Newton, S. S., & Summers, C. H. (2018). Orexin 2 receptor stimulation enhances resilience, while orexin 2 inhibition promotes susceptibility, to social stress, anxiety and depression. Neuropharmacology, 143, 79–94. https://doi.org/10.1016/j.neuropharm.2018.09.01

Tang, J., Chen, J., Ramanjaneya, M., Punn, A., Conner, A. C., & Randeva, H. S. (2008). The signalling profile of recombinant human orexin-2 receptor. Cellular signalling, 20(9), 1651–1661. https://doi.org/10.1016/j.cellsig.2008.05.010

Verbitsky, A., Dopfel, D., & Zhang, N. (2020). Rodent models of post-traumatic stress disorder: Behavioural assessment. Translational psychiatry, 10(1), 132. https://doi.org/10.1038/s41398-020-0806-x

Zhang, J. J., Gao, T. T., Wang, Y., Wang, J. L., Guan, W., Wang, Y. J., Wang, C. N., Liu, J. F., & Jiang, B. (2019). Andrographolide exerts significant antidepressant-like effects involving the hippocampal BDNF system in mice. The international journal of neuropsychopharmacology, 22(9), 585–600. https://doi.org/10.1093/ijnp/pyz032

Downloads

Published

01-05-2024

How to Cite

Sumartha, I. N. B., Aprilia, P., Salim, M. H., Kurniasari, L. W., Yasmine, G. A., Rahmadi, M., Ramli, M. Z. B., Abdullah, A. D. I., khotib, J., & Ardianto, C. (2024). Andrographolide exerts an anxiolytic-like effect possibly via regulation of the hypothalamic-orexinergic system. Pharmacy Education, 24(3), p. 12–18. https://doi.org/10.46542/pe.2024.243.1218