Development of natural polymers-based inhaled microspheres for tuberculosis

Authors

  • Yotomi Desia Eka Rani Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0009-0004-1434-0636
  • Mahardian Rahmadi Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Dewi Melani Hariyadi Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia & Nanotechnology and Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.243.123128

Keywords:

Anti-tuberculosis, Inhalation, Microsphere, Natural polymer, Tuberculosis

Abstract

Background: Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis (Mtb) that mainly affects the lungs (pulmonary TB). Treatment involves a 6-month regimen of four first-line anti-TB drugs: isoniazid (INH), rifampicin (RIF), ethambutol (ETH), and pyrazinamide (PZA). However, the effectiveness of this regimen is limited due to the protection of Mtb bacteria in lung lesions. An alternative approach involves delivering the drugs directly to the lungs through inhalation using innovative methods of microspheres, which can greatly enhance treatment efficacy.

Objective: This review focuses on inhaled microspheres that use natural polymers for anti-tubercular drugs.  

Method: A comprehensive literature survey was pulled from databases  (PubMed, Scopus, Google Scholar, and ScienceDirect) from 2012 to 2022.

Result: The characterisation studies, formulation technique, and efficacy using in vitro and in vivo studies of anti-tuberculosis drugs inhaled microspheres.

Conclusion: Microspheres have substantial potential as an inhaled drug delivery system and are likely to have significant clinical contributions in the future.

References

Ahmad, I., Ungphaiboon, S., & Srichana, T. (2014). The development of dimple-shaped chitosan carrier for ethambutol dihydrochloride dry powder inhaler. Drug Development and Industrial Pharmacy, 41(5), 791–800. https://doi.org/10.3109/03639045.2014.903493

Bangar, B., Shinde, N., Deshmukh, S., Kale, B. (2014). Natural polymers in drug delivery development. Research Journal of Pharmaceutical Dosage Forms and Technology, 6(1), 54–57.

Bagcchi, S. 2023. WHO’s global tuberculosis report 2022. The Lancet Microbe, 4(1), e20. https://doi.org/10.1016/s2666-5247(22)00359-7

Choudhury, A., Deka, D., Sonowal, K., & Laskar, R. E. (2019). Microsphere: A promising approach for drug delivery. Journal of Applied Pharmaceutical Research, 7(2), 1–6. https://doi.org/10.18231/j.joapr.2019.001

Garg, T., Goyal, A. K., Rath, G., & Murthy, R. S. R. (2015). Spray-dried particles as pulmonary delivery system of anti-tubercular drugs: design, optimization, in vitro and in vivo evaluation. Pharmaceutical Development and Technology, 21(8), 951–960. https://doi.org/10.3109/10837450.2015.1081613

Grenha, A., Alves, A. D., Guerreiro, F., Pinho, J. O., Simões, S., Almeida, A. J., & Gaspar, M. M. (2020). Inhalable locust bean gum microparticles co-associating isoniazid and rifabutin: Therapeutic assessment in a murine model of tuberculosis infection. European Journal of Pharmaceutics and Biopharmaceutics, 147, 38–44. https://doi.org/10.1016/j.ejpb.2019.11.009

Hariyadi, D. M. (2018). In vivo neuroprotective activity of erythropoietin-alginate microspheres at different polymer concentrations. Asian Journal of Pharmaceutics, 12(4), 255–260. https://doi.org/10.22377/ajp.v12i04.2833

Hariyadi, D. M., Purwanti, T., Maulydia, D., Estherline, C. A., Hendradi, E., & Rahmadi, M. (2021). Performance and drug deposition of kappa-carrageenan microspheres encapsulating ciprofloxacin HCl: Effect of polymer concentration. Journal of Advanced Pharmaceutical Technology & Research, 12(3), 242–249. https://doi.org/10.4103/japtr.japtr_197_21

Kaur, G., Narang, R. K., Rath, G., & Goyal, A. K. (2012). Advances in pulmonary delivery of nanoparticles. Artificial Cells, Blood Substitutes, and Biotechnology, 40(1–2), 75–96. https://doi.org/10.3109/10731199.2011.592494

Kaur, R., Garg, T., Malik, B., Gupta, U. D., Gupta, P., Rath, G., & Goyal, A. K. (2014). Development and characterization of spray-dried porous nano aggregates for pulmonary delivery of anti-tubercular drugs. Drug Delivery, 23(3), 872–877. https://doi.org/10.3109/10717544.2014.920428

Khadka, P., Dummer, J., Hill, P. C., & Das, S. C. (2018). Considerations in preparing for clinical studies of inhaled rifampicin to enhance tuberculosis treatment. International Journal of Pharmaceutics, 548(1), 244–254. https://doi.org/10.1016/j.ijpharm.2018.07.011

Khadka, P., Dummer, J., Hill, P. C., Katare, R., & Das, S. C. (2022). A review of formulations and preclinical studies of inhaled rifampicin for its clinical translation. Drug Delivery and Translational Research, 13(5), 1246–1271. https://doi.org/10.1007/s13346-022-01238-y

Lengyel, M., Kállai-Szabó, N., Antal, V., Laki, A. J., & Antal, I. (2019). Microparticles, microspheres, and microcapsules for advanced drug delivery. Scientia Pharmaceutica, 87(3), 20. https://doi.org/10.3390/scipharm87030020

Manca, M. L., Cassano, R., Valenti, D., Trombino, S., Ferrarelli, T., Picci, N., Fadda, A. M., & Manconi, M. (2013). Isoniazid-gelatin conjugate microparticles containing rifampicin for the treatment of tuberculosis. Journal of Pharmacy and Pharmacology, 65(9), 1302–1311. https://doi.org/10.1111/jphp.12094

Maretti, E., Rossi, T., Bondi, M., Croce, M. A., Hanuskova, M., Leo, E. G., Sacchetti, F., & Iannuccelli, V. (2014). Inhaled solid lipid microparticles to target alveolar macrophages for tuberculosis. International Journal of Pharmaceutics, 462(1–2), 74–82. https://doi.org/10.1016/j.ijpharm.2013.12.034

Miranda, M. S., Rodrigues, M. T., Domingues, R. M. A., Torrado, E., Reis, R. L., Pedrosa, J., & Gomes, M. E. (2018). Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. Materials Science and Engineering: C, 93, 1090–1103. https://doi.org/10.1016/j.msec.2018.09.004

Omar, S. M., Maziad, N. A., & El-Tantawy, N. M. (2019). Pulmonary delivery of isoniazid in nanogel-loaded chitosan hybrid microparticles for inhalation. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 32(2), 78–87. https://doi.org/10.1089/jamp.2018.1460

Patil, J. S., Devi, K., Devi, K., & Suresh, S. (2015). Formulation and evaluation of novel spray-dried alginate microspheres as pulmonary delivery systems of rifampicin in rats. Indian Journal of Pharmaceutical Education and Research, 49(4), 320–328. https://doi.org/10.5530/ijper.49.4.9

Rodrigues, S., Cunha, L., Rico, J., Da Costa, A. M. R., Almeida, A. J., Faleiro, M. L., Buttini, F., & Grenha, A. (2020). Carrageenan from red algae: an application in the development of inhalable tuberculosis therapy targeting the macrophages. Drug Delivery and Translational Research, 10(6), 1675–1687. https://doi.org/10.1007/s13346-020-00799-0

Rosita, N., Kalalo, T., Miatmoko, A., Pathak, Y., & Hariyadi, D. M. (2022). Microspheres for inhalation delivery (Characteristics and in vitro release). International Journal of Medical Reviews and Case Reports, 6(2), 24–31. https://doi.org/10.5455/ijmrcr.microspheresforinhalationdelivery

Sibum, I., Hagedoorn, P., Frijlink, H. W., & Grasmeijer, F. (2019). Characterization and formulation of isoniazid for high-dose dry powder inhalation. Pharmaceutics, 11(5), 233. https://doi.org/10.3390/pharmaceutics11050233

Downloads

Published

01-05-2024

How to Cite

Rani, Y. D. E., Rahmadi, M., & Hariyadi, D. M. (2024). Development of natural polymers-based inhaled microspheres for tuberculosis. Pharmacy Education, 24(3), p. 123–128. https://doi.org/10.46542/pe.2024.243.123128