Chronic intake of energy drinks affects changes in kidney function biomarkers in a diabetes mellitus animal model

Authors

  • Mahardian Rahmadi Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia & Biomedical Pharmacy Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Zamrotul Izzah Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0002-9371-0321
  • Ahmad Dzulfikri Nurhan Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia & Biomedical Pharmacy Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Suharjono Suharjono Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.243.2531

Keywords:

Diabetes mellitus, Energy drink, Health risk, Kidney failure, Toxicity assessment

Abstract

Background: Energy drinks are a food supplement consisting of multivitamins, macronutrients, taurine, and caffeine. Their excessive consumption is suspected to be a risk factor for chronic kidney failure.

Objective: This study aimed to determine the effect of energy drinks on kidney function in rat models with diabetes mellitus (DM).

Method: Thirty-two experimental male Wistar rats were injected with alloxan 150 mg/kg intraperitoneally to induce DM and then randomly divided into four groups. The positive control group was treated with drinking water. ED1, ED2, and ED3 groups were respectively treated with energy drinks coded EDK, EDH, and EDE, with a dose equivalent to caffeine 25 mg/kg twice a day for 15 days. All energy drinks used are distributed in the Asian region, especially in Southeast Asia. Urinalysis, haematology, and kidney histopathology evaluations were carried out.

Result: Energy drinks affect BUN, serum creatinine, sodium, and potassium. In the histopathological observation of kidney tissue, there was a significant difference in the value of damage between the control group and the ED3 group.

Conclusion: Energy drinks significantly increase the risk of impaired kidney function in diabetes mellitus rat models.

References

Alexander, R. T., & Dimke, H. (2022). Molecular mechanisms underlying paracellular calcium and magnesium reabsorption in the proximal tubule and thick ascending limb. Annals of the New York Academy of Sciences, 1518(1), 69‒83. https://doi.org/10.1111/nyas.14909

Bhasin, B., & Velez, J. C. Q. (2016). Evaluation of polyuria: The roles of solute loading and water diuresis. American Journal of Kidney Diseases, 67(3), 507‒511. https://doi.org/10.1053/j.ajkd.2015.10.021

Czarnecka, K., Pilarz, A., Rogut, A., Maj, P., Szymańska, J., Olejnik, Ł., & Szymański, P. (2021). Aspartame—true or false? Narrative review of safety analysis of general use in products. Nutrients, 13(6), 1957. https://doi.org/10.3390/nu13061957

Fenton, R. A., Poulsen, S. B., de la Mora Chavez, S., Soleimani, M., Busslinger, M., Dominguez Rieg, J. A., & Rieg, T. (2015). Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3. American Journal of Physiology-Renal Physiology, 308(12), F1409‒F1420. https://doi.org/10.1152/ajprenal.00129.2015

Higgins, J. P., Babu, K., Deuster, P. A., & Shearer, J. (2018). Energy drinks: A contemporary issues paper. Current sports medicine reports, 17(2), 65‒72. https://doi.org/10.1249/JSR.0000000000000454

Houghtaling, B., Holston, D., Szocs, C., Penn, J., Qi, D., & Hedrick, V. (2021). A rapid review of stocking and marketing practices used to sell sugar‐sweetened beverages in US food stores. Obesity Reviews, 22(4), e13179. https://doi.org/10.1111/obr.13179

Iacobelli, S., & Guignard, J. P. (2021). Maturation of glomerular filtration rate in neonates and infants: An overview. Pediatric Nephrology, 36(6), 1439‒1446. https://doi.org/10.1007/s00467-020-04632-1

Johnson-Delaney, C. A. (1996). Exotic companion medicine handbook for veterinarians. Wingers Publishing Incorporated.

Junior, A. G., Boffo, M. A., Lourenço, E. L. B., Stefanello, M. E. A., Kassuya, C. A. L., & Marques, M. C. A. (2009). Natriuretic and diuretic effects of Tropaeolum majus (Tropaeolaceae) in rats. Journal of Ethnopharmacology, 122(3), 517‒522. https://doi.org/10.1016/j.jep.2009.01.021

Lai, Y., Zheng, H., Sun, X., Lin, J., Li, Q., Huang, H., Hou, Yi., Zhong, H., Zhang, D., Fucai, T., & He, Z. (2022). The advances of calcium oxalate calculi associated drugs and targets. European Journal of Pharmacology, 935, 175324. https://doi.org/10.1016/j.ejphar.2022.175324

Manoeuvrier, G., Bach-Ngohou, K., Batard, E., Masson, D., & Trewick, D. (2017). Diagnostic performance of serum blood urea nitrogen to creatinine ratio for distinguishing prerenal from intrinsic acute kidney injury in the emergency department. BMC nephrology, 18(1), 1‒7. https://doi.org/10.1186/s12882-017-0591-9

Mansy, W., Alogaiel, D. M., Hanafi, M., & Zakaria, E. (2017). Effects of chronic consumption of energy drinks on liver and kidney of experimental rats. Tropical Journal of Pharmaceutical Research, 16(12), 2849‒2856. https://doi.org/10.4314/tjpr.v16i12.8

Miranda-Díaz, A. G., Pazarín-Villaseñor, L., Yanowsky-Escatell, F. G., & Andrade-Sierra, J. (2016). Oxidative stress in diabetic nephropathy with early chronic kidney disease. Journal of diabetes research, 2016, 7047238. https://doi.org/10.1155/2016/7047238

Moftakhar, L., Jafari, F., Ghoddusi Johari, M., Rezaeianzadeh, R., Hosseini, S. V., & Rezaianzadeh, A. (2022). Prevalence and risk factors of kidney stone disease in population aged 40–70 years old in Kharameh cohort study: a cross-sectional population-based study in southern Iran. BMC urology, 22(1), 1‒9. https://doi.org/10.1186/s12894-022-01161-x

Moreno-Gómez-Toledano, R., Arenas, M. I., Vélez-Vélez, E., Coll, E., Quiroga, B., Bover, J., & Bosch, R. J. (2021). Bisphenol A exposure and kidney diseases: Systematic review, meta-analysis, and NHANES 03–16 study. Biomolecules, 11(7), 1046. https://doi.org/10.3390/biom11071046

Oldridge, J., & Karmarkar, S. (2015). Fluid and electrolyte problems in renal dysfunction. Anaesthesia & Intensive Care Medicine, 16(6), 262‒266. https://doi.org/10.1016/j.mpaic.2012.04.011

Peleli, M., & Carlstrom, M. (2017). Adenosine signaling in diabetes mellitus and associated cardiovascular and renal complications. Molecular aspects of medicine, 55, 62‒74. https://doi.org/10.1016/j.mam.2016.12.001

Puspitasari, L., & Dira, M. A. (2022). IAI SPECIAL EDITION: Phytochemical screening and antidiabetic activities test of ethanol extract from Syzygium cumini L. seeds in male Wistar rats induced by alloxan. Pharmacy Education, 22(2), 165‒168. https://doi.org/10.46542/pe.2022.222.165168

Qinna, N. A., & Badwan, A. A. (2015). Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug design, development and therapy, 9, 2515‒2525. https://doi.org/10.2147/DDDT.S79885

Rahmadi, M., Nurhan, A. D., Pratiwi, E. D., Prameswari, D. A., Panggono, S. M., Nisak, K., & Khotib, J. (2021). The effect of various high-fat diet on liver histology in the development of NAFLD models in mice. Journal of Basic and Clinical Physiology and Pharmacology, 32(4), 547‒553. https://doi.org/10.1515/jbcpp-2020-0426

Rahmadi, M., Ardianto, C., Nurhan, A. D., Suprapti, B., Segaran, S., Phan, C. W., & Khotib, J. (2022). Bisacodyl overcomes morphine-induced constipation by decreasing colonic Aquaporin-3 and Aquaporin-4 expression. Research Results in Pharmacology, 8(4), 65‒75. https://doi.org/10.3897/rrpharmacology.8.82242

Sawie, H. G., Khadrawy, Y. A., El-Gizawy, M. M., Mourad, H. H., Omara, E. A., & Hosny, E. N. (2023). Effect of alpha-lipoic acid and caffeine-loaded chitosan nanoparticles on obesity and its complications in liver and kidney in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1‒15. https://doi.org/10.1007/s00210-023-02507-4

Schifferstein, H. N. (2020). Changing food behaviors in a desirable direction. Current Opinion in Food Science, 33, 30‒37. https://doi.org/10.1016/j.cofs.2019.11.002

Siener, R. (2021). Nutrition and kidney stone disease. Nutrients, 13(6), 1917. https://doi.org/10.3390/nu13061917

Temple, J. L., Bernard, C., Lipshultz, S. E., Czachor, J. D., Westphal, J. A., & Mestre, M. A. (2017). The safety of ingested caffeine: A comprehensive review. Frontiers in psychiatry, 8, 80. https://doi.org/10.3389/fpsyt.2017.00080

Vallon, V., & Thomson, S. C. (2020). The tubular hypothesis of nephron filtration and diabetic kidney disease. Nature Reviews Nephrology, 16(6), 317‒336. https://doi.org/10.1038/s41581-020-0256-y

Watson, F., & Austin, P. (2021). Physiology of human fluid balance. Anaesthesia & Intensive Care Medicine, 22(10), 644‒651. https://doi.org/10.1016/j.mpaic.2021.07.010

Yamada, S., & Inaba, M. (2021). Potassium metabolism and management in patients with CKD. Nutrients, 13(6), 1751. https://doi.org/10.3390/nu13061751

Downloads

Published

01-05-2024

How to Cite

Rahmadi, M., Izzah, Z., Nurhan, A. D., & Suharjono, S. (2024). Chronic intake of energy drinks affects changes in kidney function biomarkers in a diabetes mellitus animal model. Pharmacy Education, 24(3), p. 25–31. https://doi.org/10.46542/pe.2024.243.2531