The role of IL-1, IL-6 and TNF-α in breast cancer development and progression

Authors

  • Ahmed A Al-Qubati Master Programme of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0001-9949-4095
  • Mahardian Rahmadi Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Tri Widiandani Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0002-0156-6095
  • Jamal N Al-Maamari Doctoral Programme of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0002-0655-9441
  • Junaidi Khotib Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.243.3238

Keywords:

Breast cancer, IL-1, IL-6, Proinflammatory cytokine, TNF-α, Tumour microenvironment

Abstract

Background: Breast cancer (BC) is the most diagnosed cancer among women worldwide and the second-most cause of women's deaths. The interleukin-1 (IL-1), interleukin-6 (IL-6), and tumour necrosis factor-α (TNF-α) are critical for BC pathogenesis. They participate in BC development and progression by regulating several pathways. The findings of this review paper can potentially guide the development of targeted therapies that can improve the prognosis and treatment outcomes for BC patients.    

Objective: To make a comprehensive and up-to-date review of the original papers on the role of IL-1, IL-6, and TNF-α in BC development and progression.   

Method: This literature review is an iterative and objective analysis of the English original papers published in the last five years, which linked IL-1, IL-6, TNF-α, and BC.   

Result: IL-1, IL-6, and TNF-α significantly affect angiogenesis, proliferation, apoptosis, survival, and metastatic in BC by regulating the PI3K-PKB/Akt, JNK, IL-6/JAK/STAT3, Ras/Raf, AKT, MAPK, and NF-κB pathways. They also modulate the TME by promoting the production of extracellular matrix components and stimulating the recruitment of immune cells.    

Conclusion: Inhibiting IL-1, IL-6, and TNF-α and their downstream signalling intermediates could be promising strategies for suppressing BC development and progression. Further in-depth research is necessary to develop novel targeted therapies and improve patient outcomes.

References

Briukhovetska, D., Dorr, J., Endres, S., Libby, P., Dinarello, C. A., & Kobold, S. (2021). Interleukins in cancer: From biology to therapy. Nature reviews. Cancer, 21(8), 481‒499. https://doi.org/10.1038/s41568-021-00363-z

Chen, J., Wei, Y., Yang, W., Huang, Q., Chen, Y., Zeng, K., & Chen, J. (2022). IL-6: The link between inflammation, immunity and breast cancer. Frontiers Oncology, 12, 903800. https://doi.org/10.3389/fonc.2022.903800

Chonov, D. C., Ignatova, M. M. K., Ananiev, J. R., & Gulubova, M. V. (2019). IL-6 Activities in the tumour microenvironment. Part 1. Open Access Maced Journal of Medical Science, 7(14), 2391‒2398. https://doi.org/10.3889/oamjms.2019.589

Cruceriu, D., Baldasici, O., Balacescu, O., & Berindan-Neagoe, I. (2020). The dual role of tumour necrosis factor-alpha (TNF-alpha) in breast cancer: Molecular insights and therapeutic approaches. Cell Oncology (Dordr), 43(1), 1‒18. https://doi.org/10.1007/s13402-019-00489-1

Fasoulakis, Z., Kolios, G., Papamanolis, V., & Kontomanolis, E. N. (2018). Interleukins associated with breast cancer. Cureus, 10(11), e3549. https://doi.org/10.7759/cureus.3549

Gelfo, V., Romaniello, D., Mazzeschi, M., Sgarzi, M., Grilli, G., Morselli, A., Manzan, B., Rihawi, K., & Lauriola, M. (2020). Roles of IL-1 in cancer: From tumour progression to resistance to targeted therapies. International Journal of Molecular Science, 21(17), 6009. https://doi.org/10.3390/ijms21176009

Gomes, T., Varady, C. B. S., Lourenco, A. L., Mizurini, D. M., Rondon, A. M. R., Leal, A. C., Goncalves, B. S., Bou-Habib, D. C., Medei, E., & Monteiro, R. Q. (2019). IL-1beta blockade attenuates thrombosis in a neutrophil extracellular trap-dependent breast cancer model. Frontiers in Immunology, 10, 2088. https://doi.org/10.3389/fimmu.2019.02088

Hashimoto, S., Hashimoto, A., Muromoto, R., Kitai, Y., Oritani, K., & Matsuda, T. (2022). Central roles of STAT3-mediated signals in onset and development of cancers: Tumorigenesis and immunosurveillance. Cells, 11(16), 2618. https://doi.org/10.3390/cells11162618

Huang, B., Lang, X., & Li, X. (2022). The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Frontiers in Oncology, 12, 1023177. https://doi.org/10.3389/fonc.2022.1023177

Kaplanov, I., Carmi, Y., Kornetsky, R., Shemesh, A., Shurin, G. V., Shurin, M. R., Dinarello, C. A., Voronov, E., & Apte, R. N. (2019). Blocking IL-1beta reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumour abrogation. Proceedings of the National Academy of Sciences of the United States of America, 116(4), 1361‒1369. https://doi.org/10.1073/pnas.1812266115

Lee, H. M., Lee, H. J., & Chang, J. E. (2022). Inflammatory cytokine: An attractive target for cancer treatment. Biomedicines, 10(9), 2116. https://doi.org/10.3390/biomedicines10092116

Liu, W., Lu, X., Shi, P., Yang, G., Zhou, Z., Li, W., Mao, X., Jiang, D., & Chen, C. (2020). TNF-alpha increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-kappaB pathway. Scientific Reports, 10(1), 1804. https://doi.org/10.1038/s41598-020-58642-y

Ma, J. H., Qin, L., & Li, X. (2020). Role of STAT3 signalling pathway in breast cancer. Cell Communication and Signaling, 18(1), 1‒13. https://doi.org/10.1186/s12964-020-0527-z

Malla, R. R., & Kiran, P. (2022). Tumour microenvironment pathways: Cross regulation in breast cancer metastasis. Genes and Diseases, 9(2), 310‒324. https://doi.org/10.1016/j.gendis.2020.11.015

Martinez-Reza, I., Diaz, L., Barrera, D., Segovia-Mendoza, M., Pedraza-Sanchez, S., Soca-Chafre, G., Larrea, F., & Garcia-Becerra, R. (2019). Calcitriol inhibits the proliferation of triple-negative breast cancer cells through a mechanism involving the proinflammatory cytokines IL-1beta and TNF-alpha. Journal of Immunology Research, 2019, 6384278. https://doi.org/10.1155/2019/6384278

Martínez-Pérez, C., Kay, C., Meehan, J., Gray, M., Dixon, J. M., & Turnbull, A. K. (2021). The IL6-like cytokine family: Role and biomarker potential in breast cancer. Journal of personalized medicine, 11(11), 1073. https://doi.org/10.3390/jpm11111073

Masjedi, A., Hashemi, V., Hojjat-Farsangi, M., Ghalamfarsa, G., Azizi, G., Yousefi, M., & Jadidi-Niaragh, F. (2018). The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomedicine and Pharmacotherapy, 108, 1415‒1424. https://doi.org/10.1016/j.biopha.2018.09.177

Méndez-García, L. A., Nava-Castro, K. E., Ochoa-Mercado, T. d. L., Palacios-Arreola, M. I., Ruiz-Manzano, R. A., Segovia-Mendoza, M., Solleiro-Villavicencio, H., Cázarez-Martínez, C., & Morales-Montor, J. (2019). Breast cancer metastasis: Are cytokines important players during its development and progression? Journal of Interferon & Cytokine Research, 39(1), 39‒55. https://doi.org/10.1089/jir.2018.0024

Meškytė, E. M., Pezze, L., Bartolomei, L., Forcato, M., Bocci, I. A., Bertalot, G., Barbareschi, M., Oliveira-Ferrer, L., Bisio, A., Bicciato, S., Baltriukiene, D., & Ciribilli, Y. (2023). ETV7 reduces inflammatory responses in breast cancer cells by repressing the TNFR1/NF-kappaB axis. Cell Death and Disease, 14(4), 263. https://doi.org/10.1038/s41419-023-05718-y

Nisar, M. A., Zheng, Q., Saleem, M. Z., Ahmmed, B., Ramzan, M. N., Ud Din, S. R., Tahir, N., Liu, S., & Yan, Q. (2021). IL-1beta promotes vasculogenic mimicry of breast cancer cells through p38/MAPK and PI3K/Akt signalling pathways. Fronters Oncology, 11, 618839. https://doi.org/10.3389/fonc.2021.618839

Perez-Tejada, J., Aizpurua-Perez, I., Labaka, A., Vegas, O., Ugartemendia, G., & Arregi, A. (2021). Distress, proinflammatory cytokines and self-esteem as predictors of quality of life in breast cancer survivors. Physiology and Behaviour, 230, 113297. https://doi.org/10.1016/j.physbeh.2020.113297

Rahimian, G., Shahini Shams Abadi, M., Mirzaei, Y., Hussein Mer, A., Ahmadi, R., & Azadegan-Dehkordi, F. (2022). Relationship between mucosal TNF-alpha expression and Th1, Th17, Th22 and Treg responses in Helicobacter pylori infection. AMB Express, 12(1), 113. https://doi.org/10.1186/s13568-022-01456-0

Rahmani, F., Ferns, G. A., Talebian, S., Nourbakhsh, M., Avan, A., & Shahidsales, S. (2020). Role of regulatory miRNAs of the PI3K/AKT signalling pathway in the pathogenesis of breast cancer. Gene, 737, 144459. https://doi.org/10.1016/j.gene.2020.144459

Rebe, C., & Ghiringhelli, F. (2020). Interleukin-1beta and cancer. Cancers (Basel), 12(7), 1791. https://doi.org/10.3390/cancers12071791

Taher, M. Y., Davies, D. M., & Maher, J. (2018). The role of the interleukin (IL)-6/IL-6 receptor axis in cancer. Biochemical Society Transactions, 46(6), 1449‒1462. https://doi.org/10.1042/BST20180136

To, S. Q., Dmello, R. S., Richards, A. K., Ernst, M., & Chand, A. L. (2022). STAT3 signalling in breast cancer: Multicellular actions and therapeutic potential. Cancers (Basel), 14(2), 429. https://doi.org/10.3390/cancers14020429

Tzang, B. S., Chen, V. C. H., Hsieh, C. C., Wang, W. K., Weng, Y. P., Ho, H. Y., Hsu, Y. T., Hsaio, H. P., Weng, J. C., & Chen, Y. L. (2020). Differential associations of proinflammatory and anti-inflammatory cytokines with depression severity from noncancer status to breast cancer course and subsequent chemotherapy. BMC cancer, 20(1), 1‒9. https://doi.org/10.1186/s12885-020-07181-w

Wang, L., Zhang, S., & Wang, X. (2020). The metabolic mechanisms of breast cancer metastasis. Frontiers Oncology, 10, 602416. https://doi.org/10.3389/fonc.2020.602416

Wilkinson, L., & Gathani, T. (2022). Understanding breast cancer as a global health concern. British Journal of Radiology, 95(1130), 20211033. https://doi.org/10.1259/bjr.20211033

Zan, L., Chen, Q., Zhang, L., & Li, X. (2019). Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25. Bioengineered, 10(1), 374‒382. https://doi.org/10.1080/21655979.2019.1657327

Zhang, T., Ma, C., Zhang, Z., Zhang, H., & Hu, H. (2021). NF-kappaB signalling in inflammation and cancer. MedComm (2020), 2(4), 618‒653. https://doi.org/10.1002/mco2.104

Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., & Li, Y. (2021). Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduction and Target Therapy, 6(1), 263. https://doi.org/10.1038/s41392-021-00658-5

Zielińska, K., Kwasniak, K., Tabarkiewicz, J., & Karczmarek-Borowska, B. (2018). The role of pro-inflammatory cytokines in the pathogenesis and progression of neoplasms. Postępy Higieny i Medycyny Doświadczalnej, 72, 896‒905. https://doi.org/10.5604/01.3001.0012.6931

Zimta, A. A., Tigu, A. B., Muntean, M., Cenariu, D., Slaby, O., & Berindan-Neagoe, I. (2019). Molecular links between central obesity and breast cancer. International Journal of Molecular Sciences, 20(21), 5364. https://doi.org/10.3390/ijms20215364

Downloads

Published

01-05-2024

How to Cite

Al-Qubati, A. A., Rahmadi, M., Widiandani, T., Al-Maamari , J. N., & Khotib, J. (2024). The role of IL-1, IL-6 and TNF-α in breast cancer development and progression. Pharmacy Education, 24(3), p. 32–38. https://doi.org/10.46542/pe.2024.243.3238