Mechanical characterisation of polylactic acid-alendronate bioscrew in different concentrations of glutaraldehyde

Authors

  • Samirah Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, Indonesia https://orcid.org/0000-0002-7918-5487
  • Nadea Kalila Yasmin Undergraduate Student of the Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, Indonesia
  • Aniek Setiya Budiatin Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, Indonesia
  • Dinda Monika Nusantara Ratri Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, Indonesia https://orcid.org/0000-0001-6493-3561
  • Ani Nurul Fauziyah Bachelor of Biology Programme, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia https://orcid.org/0000-0002-1308-5803
  • Toetik Aryani Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, Indonesia
  • Dewi Wara Shinta Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.243.101104

Keywords:

Alendronate, Bioscrew, Glutaraldehyde, Human and health, Polylactic acid

Abstract

Background: Bioscrew is a developing innovation as a substitute to avoid re-surgery for screw removal; one of the bioscrew materials is polylactic acid (PLA). Alendronate plays a role in reducing osteoclastic activity, causing a decrease in osteoclast-mediated bone resorption, thereby accelerating the process of bone union.

Objective: This study determines adding various glutaraldehyde concentrations to the bioscrew mechanical characteristics.

Method: This study used the PLA bioscrew immersed into bovine hydroxyapatite (BHA)-gelatin (GEL)-alendronate (ALE) solution, then added with 0% (F1), 1% (F2), and 1,5% (F3) glutaraldehyde (GTA) as cross-link agent.

Result: The pore diameter for F1, F2, and F3 were: 38.90±15.34; 29.01±8.94; and 30.58±7.40 μm, respectively. The flexural strength for F1, F2, and F3 were: 1.00±0.22, 1.18±0.13, and 1.11±0.16 MPa, respectively. The pull-out strength for F1, F2, and F3 were: 4.88 ± 0.79; 7.87 ± 0.24; and 7.65±1.02 N, respectively. The degradation rate for F1, F2, and F3 were: 14.40±2.08; 3.81±0.67; and 4.97±0.58 %, respectively. This study has found that glutaraldehyde concentrations significantly affect pull-out strength and degradation rate. The highest mechanical strength and slowest degradation rate for % weight loss was F2.

Conclusion: Adding glutaraldehyde may enhance the mechanical characteristics of the bioscrew.

References

Arianita, A., Cahyaningtyas, Amalia, B., Pujiastuti, W., Melanie, S., Fauzia, V., & Imawan, C. (2018). Effect of glutaraldehyde to the mechanical properties of chitosan/nanocellulose. Journal of Physics: Conference Series, 1317, 012045. https://doi.org/10.1088/1742-6596/1317/1/012045

Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., & Roveri, N. (2001). Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 22(8), 763–768. https://doi.org/10.1016/S0142-9612(00)00236-2

Budiatin, A. S., Zainuddin, M., & Khotib, J. (2014). Biocompatible composite as gentamicin delivery system for osteomyelitis and bone regeneration. International Journal of Pharmacy and Pharmaceutical Sciences, 6, 223‒226. https://repository.unair.ac.id/73098/1/C-1%20Artikel%20Jurnal.pdf

Budiatin, A. S., Khotib, J., Samirah, S., Ardianto, C., Gani, M. A., Putri, B. R. K. H., Arofik, H., Sadiwa, R. N., Lestari, I., Pratama, Y. A., Rahadiansyah, E., & Susilo, I. (2022). Acceleration of bone fracture healing through the use of bovine hydroxyapatite or calcium lactate oral and implant bovine hydroxyapatite–Gelatin on bone defect animal model. Polymers, 14(22), 4812. https://doi.org/10.3390/polym14224812

Capra, P., Dorati, R., Colonna, C., Bruni, G., Pavanetto, F., Genta, I., & Conti, B. (2011). A preliminary study on the morphological and release properties of hydroxyapatite-alendronate composite materials. Journal of Microencapsulation, 28(5), 395–405. https://doi.org/10.3109/02652048.2011.576783

Einhorn, T. A., & Gerstenfeld, L. C. (2015). Fracture healing: Mechanisms and interventions. Nature Reviews Rheumatology, 11(1), 45–54. https://doi.org/10.1038/nrrheum.2014.164

Ficai, A., Andronescu, E., Voicu, G., & Ficai, D. (2011). Advances in collagen/hydroxyapatite composite materials. In B. Attaf (Ed.), Advances in composite materials for medicine and nanotechnology (pp. 1‒31). InTech. https://doi.org/10.5772/13707

Gani, M.A., Budiatin, A.S., Shinta, D.W., Ardianto, C., Khotib, J. (2023). Bovine hydroxyapatite-based scaffold accelerated the inflammatory phase and bone growth in rats with bone defect. Journal of Applied Biomaterials & Functional Material, 21,1–12. https://doi.org/10.1177/22808000221149193

Khabibi, K., Siswanta, D., & Mudasir, M. (2021). Preparation, characterization, and in vitro hemocompatibility of glutaraldehyde-crosslinked chitosan/carboxymethylcellulose as hemodialysis Membrane. Indonesian Journal of Chemistry, 21(5), 1120. http://dx.doi.org/10.22146/ijc.61704

Khotib, J., Lasandara, C. S., Samirah, S., & Budiatin, A. S. (2019). Acceleration of bone fracture healing through the use of natural bovine hydroxyapatite implant on bone defect animal model. Folia Medica Indonesiana, 55(3), 176–187. https://doi.org/10.20473/fmi.v55i3.15495

Narayanan, G., Vernekar, V. N., Kuyinu, E. L., & Laurencin, C. T. (2016). Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced Drug Delivery Reviews, 107, 247–276. https://doi.org/10.1016/j.addr.2016.04.015

Olszynski, W. P., & Davison, K. S. (2008). Alendronate for the treatment of osteoporosis in men. Expert Opinion on Pharmacotherapy, 9(3), 491–498. https://doi.org/10.1517/14656566.9.3.491

Pinczewski, L. A., & Salmon, L. J. (2017). Editorial commentary: The acrid bioscrew in anterior cruciate ligament reconstruction of the knee. The Journal of Arthroscopic and Related Surgery, 33(12), 2195–2197. https://doi.org/10.1016/j.arthro.2017.08.229

Putra, A. P., Rahmah, A. A., Fitriana, N., Rohim, S. A., Jannah, M., & Hikmawati, D. (2018). The effect of glutaraldehyde on hydroxyapatite-gelatin composite with addition of alendronate for bone filler application. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 37, 107–116. https://doi.org/10.4028/www.scientific.net/JBBBE.37.107

Wei, S., Ma, J. X., Xu, L., Gu, X. S., & Ma, X. L. (2020). Biodegradable materials for bone defect repair. Military Medical Research, 7(54), 1‒25. https://doi.org/10.1186/s40779-020-00280-6

Whulanza, Y., Azadi, A., Supriadi, S., Rahman, S. F., Chalid, M., Irsyad, M., Nadhif, M. H., & Kreshanti, P. (2022). Tailoring mechanical properties and degradation rate of maxillofacial implant based on sago starch/polylactid acid blend. Heliyon, 8(2022), e08600. https://doi.org/10.1016/j.heliyon.2021.e08600

Wu, A.-M., Bisignano, C., James, S. L., Gebreheat, G., Abedi, A., Abu‐Gharbieh, E., Alhassan, R. K., Alipour, V., Arabloo, J., Asaad, M., Niguse, W., …, Vos, T. (2021). Global, regional, and national burden of bone fractures in 204 countries and trritories, 1990–2019: A systematic analysis from the global burden of disease study 2019. Lancet Healthy Longev, 2(2021), e580‒e592. https://doi.org/10.1016/S2666-7568(21)00172-0

Downloads

Published

01-05-2024

How to Cite

Samirah, Yasmin, N. K., Budiatin, A. S., Ratri, D. M. N., Fauziyah, A. N., Aryani, T., & Shinta, D. W. (2024). Mechanical characterisation of polylactic acid-alendronate bioscrew in different concentrations of glutaraldehyde. Pharmacy Education, 24(3), p. 101–104. https://doi.org/10.46542/pe.2024.243.101104