Hydrogen bond analysis of the p-coumaric acid-nicotinamide cocrystal using the DFT and AIM method

Authors

  • Fery Eko Pujiono Department of Pharmacy, Faculty of Pharmacy, Institut Ilmu Kesehatan Bhakti Wiyata, Indonesia & Doctoral of Pharmacy, Faculty of Pharmacy, Airlangga University, Indonesia https://orcid.org/0000-0002-9859-3216
  • Dwi Setyawan Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0001-8009-6054
  • Juni Ekowati Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.243.5762

Keywords:

AIM, Cocrystal, DFT, Hydrogen bond, Nicotinamide, p-coumaric acid

Abstract

Background: The molecular geometric structure of p-coumaric acid-nicotinamide has been optimised using Density Functional Theory (DFT) and Atom In Molecule (AIM).    

Objective: To analyse the hydrogen bond of the p-coumaric acid–nicotinamide cocrystal.    

Method: Structural optimisation using DFT was carried out on the basis set B3LYP/6-311G++ (d, p). The electron density topology from the optimisation results obtained was then validated using the Non-Covalent Interaction (NCI) method.    

Result: Optimisation results showed that there are intermolecular hydrogen bonds in the carbonyl group of p-coumaric acid and the amine group of nicotinamide, namely C1=O11∙∙∙O34 with length 1.804 Å. On the other hand, the results of the topology test with AIM showed a value of ∇2ρ = 0.1196 a.u; G = 0.0393 a.u; H = 0.0946 a.u; V = -0.0488 a.u which means there was an intermolecular Hydrogen bond with EH∙∙∙O = -64.05 a.u.    

Conclusion: A hydrogen bond in the cocrystal of p-coumaric acid-nicotinamide is classified as an intermolecular hydrogen bond between the carbonyl group of p-coumaric acid and the amine group in the carboxyl group.

References

Akhtaruzzaman, Khan, S., Dutta, B., Kannan, T. S., Kumar Kole, G., & Hedayetullah Mir, M. (2023). Cocrystals for photochemical solid-state reactions: An account on crystal engineering perspective. Coordination Chemistry Reviews, 483, 215095. https://doi.org/10.1016/j.ccr.2023.215095

Akman, F., Issaoui, N., & Kazachenko, A. S. (2020). Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n) (n = 1, …, 5): X-ray, DFT, NBO, AIM, and RDG analyses. Journal of Molecular Modeling, 26(6), 161. https://doi.org/10.1007/s00894-020-04423-3

Bolla, G., Sarma, B., & Nangia, A. K. (2022). Crystal engineering of pharmaceutical cocrystals in the discovery and development of improved drugs. Chemical Reviews, 122(13), 11514–11603. https://doi.org/10.1021/acs.chemrev.1c00987

Buddhadev, S. S., & Garala, K. C. (2021). Pharmaceutical cocrystals—a review. Multidisciplinary Digital Publishing Institute Proceedings, 62(1), 14. https://doi.org/10.3390/proceedings2020062014

Chethan, B. S., & Lokanath, N. K. (2022). Study of the crystal structure, H-bonding and non-covalent interactions of novel cocrystal by systematic computational search approach. Journal of Molecular Structure, 1251, 131936. https://doi.org/10.1016/j.molstruc.2021.131936

Hammami, F., & Issaoui, N. (2022). A DFT study of the hydrogen bonded structures of pyruvic acid–water complexes. Frontiers in Physics, 10. https://doi.org/10.3389/fphy.2022.901736

Lindquist-Kleissler, B., Wenger, J. S., & Johnstone, T. C. (2021). Analysis of oxygen–pnictogen bonding with full bond path topological analysis of the electron density. Inorganic Chemistry, 60(3), 1846–1856. https://doi.org/10.1021/acs.inorgchem.0c03308

Liu, L., Wang, J. R., & Mei, X. (2022). Enhancing the stability of active pharmaceutical ingredients by the cocrystal strategy. CrystEngComm, 24(11), 2002–2022. https://doi.org/10.1039/D1CE01327K

Lu, T., & Chen, Q. (2021). Interaction region indicator: A simple real space function clearly revealing both chemical bonds and weak interactions. Chemistry–Methods, 1(5), 231–239. https://doi.org/10.1002/cmtd.202100007

Martínez, L. M., Cruz-Angeles, J., Vázquez-Dávila, M., Martínez, E., Cabada, P., Navarrete-Bernal, C., & Cortez, F. (2022). Mechanical activation by ball milling as a strategy to prepare highly soluble pharmaceutical formulations in the form of co-amorphous, co-crystals, or polymorphs. Pharmaceutics, 14(10), 2003. https://doi.org/10.3390/pharmaceutics14102003

Megrouss, Y., Yahiaoui, S., Boukabcha, N., Azayez, M., Nekrouf, A., Kaas, S. A., Bennabi, S., Saidj, M., Chouaih, A., & Drissi, M. (2023). Charge density study, DFT calculations, hirshfield surface analysis and molecular docking of (Z)-3-N-(Ethyl)-2-N ’-(3-methoxyphenyl imino) thiazolidine-4-one. Russian Journal of Physical Chemistry A, 97(8), 1731–1745. https://doi.org/10.1134/S0036024423080319

Mojica-Sánchez, J. P. (2023). Applications of the quantum theory of atoms in molecules in chemical reactivity. Elsevier In Chemical Reactivity, 1–14.. https://doi.org/10.1016/B978-0-32-390259-5.00007-X

North, S. C., Jorgensen, K. R., Pricetolstoy, J., & Wilson, A. K. (2023). Population analysis and the effects of Gaussian basis set quality and quantum mechanical approach: The main group through heavy element species. Frontiers in Chemistry, 11. https://doi.org/10.3389/fchem.2023.1152500

Plumley, J. A., & Dannenberg, J. J. (2011). A comparison of the behaviour of functional/basis set combinations for hydrogen bonding in the water dimer with emphasis on the basis set superposition error. Journal of Computational Chemistry, 32(8), 1519–1527. https://doi.org/10.1002/jcc.21729

Řezáč, J. (2020). Non-Covalent Interactions Atlas Benchmark Data Sets: Hydrogen Bonding. Journal of Chemical Theory and Computation, 16(4), 2355–2368. https://doi.org/10.1021/acs.jctc.9b01265

Setyawan, D., Sulistyowaty, M. I., Sari, I. P., Yusuf, H., & Zaini, E. (2023). The formation of p-Methoxycinnamic acid-caffeine co-crystal by the solution evaporation method and its physicochemical characterisation. AIP Conference Proceedings, 2536, 050008. https://doi.org/10.1063/5.0119975

Sharma, A., Verma, V. K., Singh, J. B., & Guin, M. (2022). Investigation of intramolecular hydrogen bonding in naphthoquinone derivatives by quantum chemical calculations. Journal of Physical Organic Chemistry. https://doi.org/10.1002/poc.4413

Tupe, S. A., Khandagale, S. P., & Jadhav, A. B. (2023). Pharmaceutical cocrystals: An emerging approach to modulate physicochemical properties of active pharmaceutical ingredients. Journal of Drug Delivery and Therapeutics, 13(4), 101–112. https://doi.org/10.22270/jddt.v13i4.6016

Verma, P., Srivastava, A., Tandon, P., & Shimpi, M. R. (2022). Experimental and quantum chemical studies of nicotinamide-oxalic acid salt: Hydrogen bonding, AIM and NBO analysis. Frontiers in Chemistry, 10. https://doi.org/10.3389/fchem.2022.855132

Yang, Z., Wan, Z., Liu, L., Fu, J., Fan, Q., Xie, F., Zhang, Y., & Ma, J. (2022). Achieving vibrational energies of diatomic systems with high quality by machine learning improved the DFT method. RSC Advances, 12(55), 35950–35958.

Zochedh, A., Priya, M., Shunmuganarayanan, A., Sultan, A. B., & Kathiresan, T. (2023). Antitumor and antimicrobial effect of syringic acid urea cocrystal: Structural and spectroscopic characterisation, DFT calculation and biological evaluation. Journal of Molecular Structure, 1282, https://doi.org/10.1016/j.molstruc.2023.135113

Downloads

Published

01-05-2024

How to Cite

Pujiono, F. E., Setyawan, D., & Ekowati, J. (2024). Hydrogen bond analysis of the p-coumaric acid-nicotinamide cocrystal using the DFT and AIM method. Pharmacy Education, 24(3), p. 57–62. https://doi.org/10.46542/pe.2024.243.5762