Effect of montmorillonite K-10 catalyst on the synthesis of (E)-1-phenyl-3-(2-methoxyphenyl)-2-propen-1-one using the microwave irradiation method

Authors

  • Suzana Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Evieta Rohana Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0009-0008-5195-7669
  • Tutuk Budiati Faculty of Pharmacy, Universitas Katholik Widya Mandala, Surabaya, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.243.6974

Keywords:

2-Methoxychalcone, Catalyst, Microwave, Montmorillonite K-10, Synthesis

Abstract

Background: A research investigation was conducted to examine how the utilisation of the montmorillonite K-10 catalyst impacts the production of (E)-1-phenyl-3-(2-methoxyphenyl)-2-propen-1-one (PMPP) using the microwave irradiation method since the conventional method has not been successful.

Objective: The aim of this research was to investigate the impact of employing the montmorillonite K-10 catalyst in the synthesis of PMPP using the microwave irradiation method.

Method: The compound was created using the Claisen-Schmidt condensation technique through a nucleophilic addition reaction.   

Results: The result of the synthesis was a yellowish powder. The percentage of synthesis of PMPP using the microwave irradiation method was 4.98%, with a melting point of 53-54oC. The synthesised compounds were identified by UV-Vis, Infrared and H-NMR spectroscopy.

Conclusion: Synthesis of  PMPP with montmorillonite K-10 catalyst can be carried out using microwave irradiation. The synthesis using the montmorillonite K-10 catalyst gave a relatively small yield of (E)-1-phenyl-3-(2-methoxyphenyl)-2-propen-1-one compared to a strong base catalyst.

References

Chlourou, M., Abdelhedi, R., Frikha, M., H., & Trabelsi, M. (2010). Solvent free synthesis of 1,3-diaryl-2-propenones catalyzed by commercial acid-clays under ultrasound irradiation. Ultrasound Sonochern, 17(1), 246–249. https://doi.org/10.1016/j.ultsonch.2009.06.008

Dhaliwal, J. S., Moshawih, S., Goh, K. W., Loy, M. J., Hossain, M. S., Hermansyah, A., Kotra, V., Kifli, N., Goh, H. P., Dhaliwal, S. K. S., Yassin, H., & Ming, L. C. (2022). Pharmacotherapeutics applications and chemistry of chalcone derivative. Molecules, 27(20), 7062. https://doi.org/10.3390/molecules27207062

Ekanayake, U. G. M., Weerathunga, H., Weerasinghe, J., Waclawik, E. R., Sun, Z., MacLeod, J. M., O’Mullane, A. P., & Ostrikov, K. (2022). Sustainable Claisen-Schmidt chalcone synthesis catalysed by plasma-recovered MgO nanosheets fromsSeawater. Sustainable Materials and Technologies, 32. https://doi.org/10.1016/j.susmat.2022.e00394

Habibi, D., & Marvi, O. (2006). Montmorillonite KSF and montmorillonite K-10 clays as efficient catalysts for the solventless synthesis of bismaleimides and bisphthalimides using microwave irradiation. General Paper Arkivoc(xiii), 8–15. http://dx.doi.org/10.3998/ark.5550190.0007.d02

Hans, R.H., Guantai, M.E., Lategan, Smith, P. J, Wan, B., Fransbiau, S. G., Gut, J., & Chibale, P. J. (2010). Synthesis, antimalaria and antitubercular activity of acetylenic chalcones. Bioorganic Medical Chemistry Letter, 20(3), 942–944. https://doi.org/10.1016/j.bmcl.2009.12.062

Hayes, & Brittany, L.. (2002). Microwave synthesis chemistry at speed of light, CEM Publishing.

Jain, A. K., Gupta, P. K., Ganesan, K., Pande, A., & Malhotra, R. C. (2007). Rapid solvent free synthesis of aromatic hydrazides under microwave irradiation. Defence Science Journal, 57(2), 267–270. https://doi.org/10.14429/dsj.57.1753

Kabalka, G. W., Wang, I., & Pagni, R. M. (2001). Potassium fluoride doped alumina: An effective reagent for ester hydrolysis under solvent free conditions. Green Chemistry, 3, 261–262. https://doi.org/10.1039/B106423C

Kappe, O. (2019). My Twenty years in microwave chemistry: from kitchen ovens to microwaves that aren’t microwaves. The Chemical Record, 19(1), 15–39. https://doi.org/10.1002/tcr.201800045

Mahapatra, D. K., Bharti, S. K., & Asati, V. (2017). Chalcone derivatives: Anti-inflammatory potential and moleculartargets perspectives. Current Topics in Medicinal Chemistry, 17(28), 3146–3169. https://doi.org/10.2174/1568026617666170914160446

McMurry, J. (2008). Organic chemistry, 7th Edition Thomson Learning Inc.

Nordina, N. A., Ibrahimb, A. R., & Ngainic, Z. (2020). Biological studies of novel aspirin-chalcone derivatives bearing variable. Substituents Journal of Agrobiotechnology, 11(1), 20–31. http://dx.doi.org/10.37231/jab.2020.11.1.185

Pambudi, W., Haryadi, W., Matsjeh, S., & Indarto. (2019). The effectiveness of hydroxychalcone synthesis by using NaOH and NaOH+ZrO2 montmorillonite catalyst through conventional and microwave assisted organic synthesis (Maos) method. Journal of Physic: Conf. Series 1155 (2019)012074, 1–8. https://iopscience.iop.org/article/10.1088/1742-6596/1155/1/012074

Paul, S., Nanda, P., & Gupta, R. (2003). PhCOCl-Py/ Basic Alumina as a versaatile reagent for benzoylation in solvent-free condition. Molecules, 8(4), 374–380. https://doi.org/10.3390/80400374

Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2009). Introduction of Spectroscopy, 4th edition, Brooks/Cole.

Silverstein, R. M., Webster, F. X., & Kiemle, D. .J. (2005). Spectrofotometric identification of organic compound, 7th Edition. John Willey and Sons, Inc.

Solomons, G. T. W., & Fryhile, C. B. (2011). Organic chemistry. 10th ed. John Willey & Sons Inc.

Stadler, A., & Kremsner, J. M. (2014). Microwave-asssted processing techniques in medicinal chemistry. Future medicine (Publised on line). Future science book series, microwaves in drug discovery and development: recent advances. https://doi.org/10.4155/fseb2013.13.33

Wan, M., Xub, L., Hua, L., Li, A., Li, S., Lu, W., Pang., Y., Cao, C., Liu, X., & Jiao, P.(2014). Synthesis and evaluation of novel isoxazolyl chalcones as potenti antcancer agent. Bioorganic Chemistry, 54, 38–43. https://doi.org/10.1016/j.bioorg.2014.03.004

Venkatesh, T., Bodke, Y. D., Kenchappa, R. I., & Telkar, S. (2016). Synthesis, antimicrobial and antioxidant of chalcone derivatives. Medicinal Chemistry (Los Angeles), 6, 7. https://doi.org/10.4172/2161-0444.1000383

Downloads

Published

01-05-2024

How to Cite

Suzana, Rohana, E., & Budiati, T. (2024). Effect of montmorillonite K-10 catalyst on the synthesis of (E)-1-phenyl-3-(2-methoxyphenyl)-2-propen-1-one using the microwave irradiation method. Pharmacy Education, 24(3), p. 69–74. https://doi.org/10.46542/pe.2024.243.6974