Optimisation of the extraction process of pectin polymer from red dragon skin (Hylocereus polyrhizus)

Authors

  • Muhammad Fariez Kurniawan Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Indonesia & School of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Indonesia https://orcid.org/0000-0002-5100-8358
  • Dewi Melani Hariyadi Department of  Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Indonesia & Nanotechnology and Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Indonesia https://orcid.org/0000-0001-9357-3913
  • Dwi Setyawan Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Indonesia https://orcid.org/0000-0001-8009-6054

DOI:

https://doi.org/10.46542/pe.2024.243.116122

Keywords:

Optimisation, Pectin, Red dragon fruit, Skin

Abstract

Background: The variation of pectin extracted from red dragon skin (Hylocereus polyrhizus) depends on the type of acid, temperature, and length of extraction time.

Objective: This research was conducted to determine the characteristics of pectin produced from red dragon skin based on using citric, oxalic, and acetic acids at pH 4, extraction temperature of 60°C and 75°C, and duration of 120 minutes.

Method: A total of six conditions for pectin extraction were performed and the obtained product was dried using the freeze-dryer. Furthermore, the optimisation included yield, moisture content (MC), equivalent weight (EW), methoxyl content (MeO), galacturonic acid content (GA), degree of esterification (DE), sugar and organic acid levels (SO), and Fourier Transform Infrared Spectroscopy (FT-IR) was performed.

Result: The EW value of red dragon skin and commercial apple pectin were comparable but the MeO value was slightly different from those extracted with 75°C oxalic acid. Compared to commercial apple and orange skin, the GA value of red dragon pectin extracted with 75°C oxalic acid was not different.

Conclusion: FT-IR spectra contained groups -OH, -CH, and C=O and were confirmed to have a GA structure. The best product was obtained by conducting extraction under the condition of 75°C for 120 minutes using oxalic acid.

References

Abboud, K. Y., Iacomini, M., Simas, F. F., & Cordeiro, L. M. C. (2020). High methoxyl pectin from the soluble dietary fibre of passion fruit peel forms a weak gel without the requirement of sugar addition. Carbohydrate Polymers, 246, 116616. https://doi.org/10.1016/j.carbpol.2020.116616

Bee Lin, C., & Yek Cze, C. (2018). Drying kinetics and optimisation of pectin extraction from banana peels via response surface methodology. MATEC Web of Conferences, 152. https://doi.org/10.1051/matecconf/201815201002

Chan, S. Y., Choo, W. S., Young, D. J., & Loh, X. J. (2017). Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydrate Polymers, 161, 118–139. https://doi.org/10.1016/j.carbpol.2016.12.033

Cinkmanis, I., Muizniece-Brasava, S., Viluma, I., Vucane, S., Aboltins, A., & Keke, A. (2020). Extraction of pectin from apple pomace. Engineering for Rural Development, 19, 1934–1939. https://doi.org/10.22616/ERDev.2020.19.TF549

Codex Alimentarius. (2009). PECTINS INS No. 440. 7.

Colodel, C., & Petkowicz, C. L. de O. (2019). Acid extraction and physicochemical characterisation of pectin from cubiu (Solanum sessiliflorum D.) fruit peel. Food Hydrocolloids, 86, 193–200. https://doi.org/10.1016/j.foodhyd.2018.06.013

Directorate General of Pharmaceuticals and Health Devices. (2020). Indonesian Pharmacopoeia VI. In Ministry of Health of the Republic of Indonesia (VI). Direktorat Jenderal Kefarmasian dan Alat Kesehatan.

Gawkowska, D., Cybulska, J., & Zdunek, A. (2018). Structure-related gelling of pectins and linking with other natural compounds: A review. Polymers, 10(7). https://doi.org/10.3390/polym10070762

Guízar-Amezcua, M. G., Pineda-Santana, A., González-Domínguez, M. I., Cajero-Zul, L. R., Guerrero-Ramírez, L. G., López-Miranda, A., Nambo, A., & López-Mercado, J. (2022). Evaluation of pectin extractions and their application in the alkaline Maillard reaction. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/s41598-022-22002-9

Hashim, A. Z. (2018). Extraction and characterization of pectin from dragon fruit (Hylocerens polyrhizus) peel using different concentration of ammonium oxalate. Basrah Journal of Agricultural Sciences, 31(1), 12–19. https://doi.org/10.37077/25200860.2018.70

Ioannou, A. (2016). Real-time monitoring the maillard reaction intermediates by HPLC- FTIR. Journal of Physical Chemistry & Biophysics, 6(2), 6–10. https://doi.org/10.4172/2161-0398.1000210

Ismail, N. S. M., Ramli, N., Hani, N. M., & Meon, Z. (2012). Extraction and characterisation of pectin from dragon fruit (Hylocereus polyrhizus) using various extraction conditions. Sains Malaysiana, 41(1), 41–45.

Kasmiyatun, M., & Jos, B. (2008). Ekstraksi asam sitrat dan asam oksalat: Pengaruh trioctylamine sebagai extracting power dalam berbagai solven campuran terhadap koefisien distribusi. Reaktor, 12(2), 107–116. https://doi.org/10.14710/reaktor.12.2.107-116

Kurniawan, M. F., & Adenia, Z. (2022). Ekstraksi pektin kulit buah naga merah (Hylocereus polyrhizus) dengan pelarut asam sitrat dan aplikasinya sebagai polimer plastik Biodegradable. Al-Kimiya, 9(1).

Mashau, M. E., Lekhuleni, I. L. G., Kgatla, T. E., & Jideani, A. I. O. (2021). Physicochemical properties of South African prickly pear fruit and peel: Extraction and characterisation of pectin from the peel. Open Agriculture, 6(1), 178–191. https://doi.org/10.1515/opag-2021-0216

Pereira, P. H. F., Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Moates, G. K., Wellner, N., Waldron, K. W., & Azeredo, H. M. C. (2016). Pectin extraction from pomegranate peels with citric acid. International Journal of Biological Macromolecules, 88, 373–379. https://doi.org/10.1016/j.ijbiomac.2016.03.074

Resende, L. M., & Franca, A. S. (2023). Jabuticaba (Plinia sp.) Peel as a source of pectin: Characterisation and effect of different extraction methods. Foods, 12(1), 1–16. https://doi.org/10.3390/foods12010117

Septiana, A., & Puspa, G. (2017). Ekstraksi pektin pada kulit buah naga super merah (Hylocereus costaricencis) dengan variasi suhu ekstraksi dan jenis pelarut. Jurnal Ilmiah Teknik Kimia UNPAM, 1(2). https://doi.org/10.32493/jitk.v1i2.715

Souza, K. S., Moreira, L. S., Silva, B. T., Oliveira, B. P. M., Carvalho, A. S., Silva, P. S., Verri, W. A., Sá-Nakanishi, A. B., Bracht, L., Zanoni, J. N., Gonçalves, O. H., Bracht, A., & Comar, J. F. (2021). Low dose of quercetin-loaded pectin/casein microparticles reduces the oxidative stress in arthritic rats. Life Sciences, 284, 119910. https://doi.org/10.1016/j.lfs.2021.119910

Woo, K. ., Chong, Y. Y., Hiong, S. K. L., & Tang, P. Y. (2010). Pectin extraction and characterisation from red dragon fruit (Hylocereus polyrhizus): A preliminary study. Journal of Biological Sciences, 10(7), 631–636. https://doi.org/10.3923/jbs.2010.631.636

Zaidel, D. N. A., Rashid, J. M., Hamidon, N. H., Salleh, L. M., & Kassim, A. S. M. (2017). Extraction and characterisation of pectin from dragon fruit (Hylocereus polyrhizus) peels. Chemical Engineering Transactions, 56, 805–810. https://doi.org/10.3303/CET1756135

Downloads

Published

01-05-2024

How to Cite

Kurniawan, M. F., Hariyadi, D. M., & Setyawan, D. (2024). Optimisation of the extraction process of pectin polymer from red dragon skin (Hylocereus polyrhizus). Pharmacy Education, 24(3), p. 116–122. https://doi.org/10.46542/pe.2024.243.116122