Docking study of ferulic acid derivates on FGFR1, ADME prediction, and QSPR analysis

Authors

  • Darwin Riyan Ramadhan Bachelor Programme Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Juni Ekowati Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia & Drug Development Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0002-4402-2039
  • Denayu Pebrianti Bachelor Programme Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0009-0005-2523-3294
  • Farrah Yulian Listyandi Bachelor Programme Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Nuzul Wahyuning Diyah Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0001-6416-3982
  • Muhammad Faris Adrianto Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia & School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
  • Deepakkumar Mishra School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom https://orcid.org/0000-0002-5021-6825

DOI:

https://doi.org/10.46542/pe.2024.243.178184

Keywords:

ADME, Good health, Ferulic acid, FGFR1, QSPR, Well-being

Abstract

Background: FGFR-1 is an angiogenic receptor that plays a huge role in the cancer growth pathway. Angiogenesis inhibitory drugs released have significant side effects. Therefore, research into discovering anti-angiogenic agents to achieve good health and well-being is still necessary.

Objective: To design the novel anti-angiogenic candidates from ferulic acid (FA) by docking study on FGFR1, to predict the ADME profile, and to find out the structural relationship of their pharmacokinetic properties as QSPR analysis.

Method: Autodock Tools performed a docking study. ADME prediction was conducted using SwissADME. The MLR approach determined the QSPR model.

Result: The docking results showed that FA-8 and FA-18 had the lowest free energy binding, inhibition constant, and GI absorption. The QSPR analysis obtained the equation model: Log HIA = 0,018 Log P2 + 0,069 Log P + 0,020 CMR + 0,001 Etotal + 1,771 with n = 24, correlation coefficient (r)= 0.621, p-value= 0.046 and F-value= 2.975.

Conclusion: Modifying FA on the phenolic moiety replaced by an ester increased the activity and ADME profile. The predicted bioavailability was supported by high Log P, molar refractivity (CMR), and electronic factor (Etotal). It is recommended that lipophilicity be increased to achieve better pharmacokinetic properties.

References

Arnott, J. A., & Planey, S. L. (2012). The influence of lipophilicity in drug discovery and design. Expert opinion on drug discovery, 7(10), 863–875. https://doi.org/10.1517/17460441.2012.714363

Arthur, D. E., Akoji, J. N., Sahnoun, R., Okafor, G. C., Abdullahi, K. L.., Abdullahi, S. A., & Mgbemena, C. (2021). A theoretical insight in interactions of some chemical compounds as mTOR inhibitors. Bulletin of the National Research Centre, 45(67), 1–12. https://doi.org/10.1186/s42269-021-00525-x

Bergers, G., & Hanahan, D. (2008). Modes of resistance to anti-angiogenic therapy. Nature Reviews Cancer, 8(8), 592–603. https://doi.org/10.1038/nrc2442

Ekowati, J., Diyah, N. W., Nofianti, K. A., Hamid, I. S., Siswandono. (2018). Molecular docking of ferulic acid derivatives on P2Y12 receptor and their ADMET prediction. Journal of Mathematical and Fundamental Sciences, 50(2), 203–219. https://doi.org/10.5614/j.math.fund.sci.2018.50.2.8

Ekowati, J., Hamid, I. S., Diyah, N. W., & Siswandono, S. (2020). Ferulic acid prevents angiogenesis through cyclooxygenase-2 and vascular endothelial growth factor in the chick embryo chorioallantoic membrane model. Turkish Journal of Pharmaceutical Sciences, 17(4), 424–431. https://doi.org/10.4274/tjps.galenos.2019.44712

Gotink, K. J., & Verheul, H. M. W. (2010). Anti-angiogenic tyrosine kinase inhibitors: What is their mechanism of action? Angiogenesis, 13(1), 1–14. https://doi.org/10.1007/s10456-009-9160-6

Gupta, S., Kesarla, R., & Omri, A. (2013). Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN pharmaceutics, 2013, 1–16. https://doi.org/10.1155/2013/848043

Hu, J., Zhang, X., & Wang, Z. (2010). A review on progress in QSPR studies for surfactants. International Journal of Molecular Sciences, 11(3), 1020–1047. https://doi.org/10.3390/ijms11031020

Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Current Computer Aided-Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602

Muhammad, U., Uzairu, A., & Ebuka Arthur, D. (2018). Review on: quantitative structure activity relationship (QSAR) modeling. Journal of Analytical & Pharmaceutical Research, 7(2), 240–242. https://doi.org/10.15406/japlr.2018.07.00232

Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. 2022. Cancer statistics, (2022). CA: A Cancer Journal for Clinicians, 72(1), 7–33. https://doi.org/10.3322caac.21708 /

Sriramulu, D. K., Wu, S., & Lee, S.-G. (2019). Effect of ligand torsion number on the AutoDock mediated prediction of protein-ligand binding affinity. Journal of Industrial and Engineering Chemistry., 83, 359–365. https://doi.org/10.1016/j.jiec.2019.12.009

Wang, N., Wang, Z. Y., Mo, S. L., Loo, T. Y., Wang, D. M., Luo, H. bin, Yang, D. P., Chen, Y. L., Shen, J. G., & Chen, J. P. (2012). Ellagic acid, a phenolic compound, exerts anti-angiogenesis effects via VEGFR-2 signaling pathway in breast cancer. Breast Cancer Research and Treatment, 134 (3), 943–955. https://doi.org/10.1007/s10549-012-1977-9

Yang, G. W., Jiang, J. S., & Lu, W. Q., (2015). Ferulic acid exerts anti-angiogenic and antitumor activity by targeting fibroblast growth factor receptor 1-mediated angiogenesis. International Journal of Molecular Sciences, 16(10), 24011–24031. https://doi.org/10.3390/ijms161024011

Downloads

Published

01-05-2024

How to Cite

Ramadhan, D. R., Ekowati, J., Pebrianti, D., Listyandi, F. Y., Diyah, N. W., Adrianto, M. F., & Mishra, D. (2024). Docking study of ferulic acid derivates on FGFR1, ADME prediction, and QSPR analysis. Pharmacy Education, 24(3), p. 178–184. https://doi.org/10.46542/pe.2024.243.178184