Impact of different NaOH treatments on biocellulose properties from coconut water fermented by Lentilactobacillus parafarraginis

Authors

  • Indah Yulia Ningsih Doctoral Programme of Pharmaceutical Sciences & Biomaterials and Bioproducts Group & Chemo and Biosensor Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, & Faculty of Pharmacy, University of Jember, Jember, Indonesia
  • Mochammad Amrun Hidayat Biomaterials and Bioproducts Group & Chemo and Biosensor Group, Faculty of Pharmacy, University of Jember, Jember, Indonesia
  • Tristiana Erawati Department of Pharmaceutical Sciences & Cosmetic Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
  • Bambang Kuswandi Chemo and Biosensor Group, Faculty of Pharmacy, University of Jember, Jember, Indonesia https://orcid.org/0000-0002-1983-6110

DOI:

https://doi.org/10.46542/pe.2024.243.7581

Keywords:

Biocellulose property, Coconut water, NaOH treatment

Abstract

Background: Biocellulose is a natural polymer produced by bacteria with distinct physicochemical properties, although it has a chemical composition identical to plant cellulose. Before use, biocellulose was purified by chemical treatment to increase its properties.

Objective: The study aimed to evaluate biocellulose properties using NaOH solution as a purification agent.

Method: After harvesting, all samples were purified using NaOH of 0.25 M (BC0.25), 0.5 M (BC0.5), and 1 M (BC1) and determined for their properties, such as mechanical strength, swelling degree, water vapour transmission, and moisture content. Analysis of scanning electron microscope (SEM) images and Fourier Transform Infrared Spectroscopy (FTIR) spectra were also performed for characterisation.

Result: BC0.5 exhibited the highest tensile strength of 15.38±0.45 MPa and elongation at a break of 38.40±0.58%. BC1 had the highest swelling degree of 131.24±0.70%, water vapour transmission of 400.00±0.36 g/m2, and moisture content of 6.44±0.14%. Nevertheless, there were slight alterations in morphological structure and spectral peaks because of the high concentration of NaOH.

Conclusion: The use of NaOH treatment of 0.5 M in biocellulose purification removed more contaminants and resulted in better properties than other concentrations.

References

Adetunji, V., & Adegoke, G. (2007). Bacteriocin and cellulose production by lactic acid bacteria isolated from West African soft cheese. African Journal of Biotechnology, 6(22), 2616–2619. https://doi.org/10.5897/AJB2007.000-2418

Akintunde, M. O., Adebayo-Tayo, B. C., Ishola, M. M., Zamani, A., & Horváth, I. S. (2022). Bacterial cellulose production from agricultural residues by two Komagataeibacter sp. strains. Bioengineered, 13(4), 10010–10025. https://doi.org/10.1080/21655979.2022.2062970

Al-Shamary, E. E., & Al-Darwash, A. K. (2013). Influence of fermentation condition and alkali treatment on the porosity and thickness of bacterial cellulose membranes. The Online Journal of Science and Technology, 3(2), 194–203.

Bäckdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B. R., Risberg, B., & Gatenholm, P. (2006). Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 27(9), 2141–2149. https://doi.org/10.1016/j.biomaterials.2005.10.026

Belicová, A., Mikulášová, M., & Dušinský, R. (2013). Probiotic potential and safety properties of Lactobacillus plantarum from Slovak Bryndza cheese. BioMed Research International, 2013, 760298. https://doi.org/10.1155/2013/760298

Brown, A. J. (1886). XLIII.—On an acetic ferment which forms cellulose. Journal of the Chemical Society, Transactions, 49, 432–439. https://doi.org/10.1039/CT8864900432

Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial cellulose: Fermentative production and applications. Food Technology and Biotechnology, 47(2), 107–124.

Clasen, C., Sultanova, B., Wilhelms, T., Heisig, P., & Kulicke, W. M. (2006). Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromolecular Symposia, 244(1), 48–58. https://doi.org/10.1002/masy.200651204

Fang, L., & Catchmark, J. M. (2015). Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains. Carbohydrate Polymers, 115, 663–669. https://doi.org/10.1016/j.carbpol.2014.09.028

Hsieh, Y.-C., Yano, H., Nogi, M., & Eichhorn, S. J. (2008). An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose, 15(4), 507–513. https://doi.org/10.1007/s10570-008-9206-8

Kamaruddin, I., Dirpan, A., & Bastian, F. (2021). The novel trend of bacterial cellulose as biodegradable and oxygen scavenging films for food packaging application : An integrative review. IOP Conference Series: Earth and Environmental Science, Indonesia, 807(2), 1–11. https://doi.org/10.1088/1755-1315/807/2/022066

Kamide, K., Matsuda, Y., Iijima, H., & Okajima, K. (1990). Effect of culture conditions of acetic acid bacteria on cellulose biosynthesis. British Polymer Journal, 22(2), 167–171. https://doi.org/10.1002/pi.4980220212

Khan, H., Kadam, A., & Dutt, D. (2020). Studies on bacterial cellulose produced by a novel strain of Lactobacillus genus. Carbohydrate Polymers, 229, 115513. https://doi.org/10.1016/j.carbpol.2019.115513

Kim, K. M., Kim, J., & Yang, K. W. (2014). Effect of acetic acid concentration and mixed culture of lactic acid bacteria on producing bacterial cellulose using Gluconacetobacter sp. gel_SEA623-2. Korean Journal of Microbiology, 50(3), 227–232. https://doi.org/10.7845/kjm.2014.4062

Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. Journal of Materials Physics and Chemistry, 2(1), 1–8. https://doi.org/10.12691/jmpc-2-1-1

Kuswandi, B., Jayus, Oktaviana, R., Abdullah, A., & Heng, L. Y. (2014). A novel on-package sticker sensor based on methyl red for real-time monitoring of broiler chicken cut freshness. Packaging Technology and Science, 27(1), 69–81. https://doi.org/10.1002/pts.2016

Meftahi, A., Khajavi, R., Rashidi, A., Rahimi, M. K., & Bahador, A. (2015). Effect of purification on nano microbial cellulose pellicle properties. Procedia Materials Science, Iran, 11, 206–211. https://doi.org/10.1016/j.mspro.2015.11.108

Moniri, M., Boroumand Moghaddam, A., Azizi, S., Abdul Rahim, R., Bin Ariff, A., Zuhainis Saad, W., Navaderi, M., & Mohamad, R. (2017). Production and status of bacterial cellulose in biomedical engineering. Nanomaterials, 7(9), 257–282. https://doi.org/10.3390/nano7090257

Nelson, M. L., & O’Connor, R. T. (1964). Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part 11. A new infrared ratio for estimation of crystallinity in celluloses I and II*. Journal of Applied Polymer Science, 8, 1325–1341. https://doi.org/10.1002/app.1964.070080323

Üstündağ Okur, N., Hökenek, N., Okur, M. E., Ayla, Ş., Yoltaş, A., Siafaka, P. I., & Cevher, E. (2019). An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi pharmaceutical journal (SPJ): the official publication of the Saudi Pharmaceutical Society, 27(5), 738–752. https://doi.org/10.1016/j.jsps.2019.04.010

Ouarhim, W., Zari, N., Bouhfid, R., & Qaiss, A. el kacem. (2019). Mechanical performance of natural fibers–based thermosetting composites. In M. Jawaid, M. Thariq, & N. Saba (Eds.), Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites (pp. 43–60). Elsevier. https://doi.org/10.1016/B978-0-08-102292-4.00003-5

Pansara, C., Mishra, R., Mehta, T., Parikh, A., & Garg, S. (2020). Formulation of chitosan stabilized silver nanoparticle-containing wound healing film: in vitro and in vivo characterization. Journal of Pharmaceutical Sciences, 109(7), 2196–2205. https://doi.org/10.1016/j.xphs.2020.03.02849

Rusdi, R. A. A., Halim, N. A., Norizan, M. N., Abidin, Z. H. Z., Abdullah, N., Ros, F. C., Ahmad, N., & Azmi, A. F. M. (2022). Pre-treatment effect on the structure of bacterial cellulose from nata de coco (Acetobacter xylinum). Polimery, 67(3), 110–118. https://doi.org/10.14314/polimery.2022.3.3

Seaman, S. (2002). Dressing selection in chronic wound management. Journal of the American Podiatric Medical Association, 92(1), 24–33. https://doi.org/10.7547/87507315-92-1-24

Sulastri, E., Zubair, M. S., Lesmana, R., Mohammed, A. F. A., & Wathoni, N. (2021). Development and characterization of ulvan polysaccharides-based hydrogel films for potential wound dressing applications. Drug Design, Development and Therapy, 15, 4213–4226. https://doi.org/10.2147/DDDT.S331120

Sumardee, J. N. S., Mohd-Hairul, A. R., & Mortan, S. H. (2020). Effect of inoculum size and glucose concentration for bacterial cellulose production by Lactobacillus acidophilus. IOP Conference Series: Materials Science and Engineering, Malaysia, 991(1), 1–5. https://doi.org/10.1088/1757-899X/991/1/012054

Suryanto, H., Muhajir, M., Sutrisno, T. A., Mudjiono, Zakia, N., & Yanuhar, U. (2019). The mechanical strength and morphology of bacterial cellulose films: The effect of NaOH concentration. IOP Conference Series: Materials Science and Engineering, Indonesia, 515(1), 1–7. https://doi.org/10.1088/1757-899X/515/1/012053

Wang, S. S., Han, Y. H., Chen, J. L., Zhang, D. C., Shi, X. X., Ye, Y. X., Chen, D. L., & Li, M. (2018). Insights into bacterial cellulose biosynthesis from different carbon sources and the associated biochemical transformation pathways in Komagataeibacter sp. W1. Polymers, 10(9), 963–982. https://doi.org/10.3390/polym10090963

Wang, S. S., Han, Y. H., Ye, Y. X., Shi, X. X., Xiang, P., Chen, D. L., & Li, M. (2017). Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production. RSC Advances, 7(71), 45145–45155. https://doi.org/10.1039/C7RA08391B

Downloads

Published

01-05-2024

How to Cite

Ningsih, I. Y., Hidayat, M. A., Erawati, T., & Kuswandi, B. (2024). Impact of different NaOH treatments on biocellulose properties from coconut water fermented by Lentilactobacillus parafarraginis. Pharmacy Education, 24(3), p. 75–81. https://doi.org/10.46542/pe.2024.243.7581