An in silico study of the effects of chemical compounds in Petiveria alliacea leaf extract on inflammatory mediators

Authors

  • Nurmawati Fatimah Doctoral Programme of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Arifa Mustika Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Sri Agus Sudjarwo Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Ahmad Cholifa Fahruddin Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0009-0009-7275-8033
  • Lutfiah Anjarwati Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.243.153158

Keywords:

Anti-inflammatory, Immunology, Non-communicable disease, Petiveria alliacea, Plant extract

Abstract

Background: Petiveria alliacea (P. alliacea) is a botanical species renowned for its bioactive compounds and is utilised for medicinal purposes worldwide. In Southwestern Nigeria, P. alliacea finds common application in herbal medicine to address diverse ailments, including diabetes due to chronic inflammation.

Objective: This study investigates the drug-like molecular properties of chemical compounds in P. alliacea, targeting the interleukin one receptor (IL1R) and Tumor Necrosis Factor-alpha receptor (TNFAR).

Method: The target binding of the P. alliacea chemical compounds was evaluated through drug-likeness tests on the SCFBIO server. All compounds found in P. alliacea adhere to Lipinski’s Rule of Five, classifying them as drug-like molecules. Employing molecular docking simulations on PyRx v9.9.0, the interaction dynamics between P. alliacea ligands and IL1R and TNFAR were simulated.

Result: Among the compounds found in P. alliacea, namely astilbin and isoarborinol, emerge as potential candidates for IL1R and TNFAR protein inhibitors due to their notably elevated negative binding affinity values and involve Van der Waals, hydrogen and alkyl bond interactions. Then, a response was elicited that was marked by diminished oxidative stress and anti-inflammatory activity.

Conclusion: P. alliacea has the potential to inhibit proinflammatory proteins, such as IL1R and TNFAR, due to its content, namely astilbin and isoarborinol.

References

Cseke, L. J., Kirakosyan, A., Kaufman, P. B., Warber, S., Duke, J. A., & Brielmann, H. L. (2016). Natural products from plants. CRC press.

De Geest, B., & Mishra, M. (2022). Role of oxidative stress in diabetic cardiomyopathy. Antioxidants, 11(4), 784. https://doi.org/10.3390/antiox11040784.

Kobayashi, S., & Liang, Q. (2015). Autophagy and mitophagy in diabetic cardiomyopathy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1852(2), 252‒261. https://doi.org/10.1016/j.bbadis.2014.05.020.

Lipinski, C. A. (2004). Lead-and drug-like compounds: the rule-of-five revolution. Drug discovery today: Technologies, 1(4), 337‒341. https://doi.org/10.1016/j.ddtec.2004.11.007

Mustika, A., Fatimah, N., & Sari, G. M. (2021). The self-nanoemulsifying drug delivery system of Petiveria alliacea extract reduced the homeostatic model assessment-insulin resistance value, interleukin-6, and tumor necrosis factor-α level in diabetic rat models. Veterinary World, 14(12), 3229. https://doi.org/10.14202/vetworld.2021.3229-3234.

Mustika, A., Indrawati, R., & Sari, G. M. (2017). Effect of singawalang leaf extract (Petiveria alliacea) in reducing blood glucose levels by increasing AMPK-α1 expression in diabetes mellitus model rats. Indonesian Journal of Clinical Pharmacy, 6(1). https://doi.org/10.15416/ijcp.2017.6.1.22.

Muthmainah, M., Yarso, K. Y., Purwanto, B., Mudigdo, A., & Mustofa, M. (2019). 1, 4-bis-3, 4, 5-trimethoxy-phenyl-tetrahydro-furo (3, 4-c) furan from mahogany (Swietenia macrophylla king) seed significantly reduces glucose and malondialdehyde levels in diabetic wistar rats. Bali Medical Journal, 8(2), 661‒666. https://doi.org/10.15562/bmj.v%25vi%25i.1227.

Niu, J., Gilliland, M. G. F., Jin, Z., Kolattukudy, P. E., & Hoffman, W. H. (2014). MCP-1and IL-1β expression in the myocardia of two young patients with Type 1 diabetes mellitus and fatal diabetic ketoacidosis. Experimental and Molecular Pathology, 96(1), 71‒79. https://doi.org/10.1016/j.yexmp.2013.11.001.

Ogurtsova, K., da Rocha Fernandes, J. D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N. H., ... & Makaroff, L. E. (2017). IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes research and clinical practice, 128, 40‒50. https://doi.org/10.1016/j.diabres.2017.03.024

Olomieja, A. O., Olanrewaju, I. O., Ayo-Ajayi, J. I., Jolayemi, G. E., Daniel, U. O., & Mordi, R. C. (2021). Antimicrobial and Antioxidant properties of Petiveria alliacea. In IOP Conference Series: Earth and Environmental Science. 655(1), p. 012015). IOP Publishing. https://doi.org/10.1088/1755-1315/655/1/012015.

Oluwa, A., Avoseh, O., Omikorede, O., Ogunwande, I., & Lawal, O. (2017). Study on the chemical constituents and anti-inflammatory activity of essential oil of Petiveria alliacea L. British Journal of Pharmaceutical Research, 15(1), 1‒8. https://doi.org/10.15416/ijcp.2017.6.1.22.

Onyango, H., Odhiambo, P., Angwenyi, D., & Okoth, P. (2022). In silico identification of new anti-SARS-CoV-2 main protease (M pro) molecules with pharmacokinetic properties from natural sources using molecular dynamics (MD) simulations and hierarchical virtual screening. Journal of Tropical Medicine, 2022, 1‒22. https://doi.org/10.1155/2022/3697498.

Raines, E. W., & Ferri, N. (2005). Thematic review series: The immune system and atherogenesis. Cytokines affecting endothelial and smooth muscle cells in vascular disease. Journal of lipid research, 46(6), 1081‒1092. https://doi.org/10.1194/jlr.R500004-JLR200.

Rigsby, R.E., Parker, A.B. (2016) Using the PyMOL application to reinforce visual understanding of protein structure. Biochemistry and Molecular Biology Education: A Bimonthly Publication of the International Union of Biochemistry and Molecular Biology, 44(5), 433–437. https://doi.org/10.1002/bmb.20966

Shen, S., Guo, X., Yan, H., Lu, Y., Ji, X., Li, L., ... & Zhao, B. (2015). A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis. Cell research, 25(9), 997‒1012. https://doi.org/10.1038/cr.2015.98

Sumpter, K. M., Adhikari, S., Grishman, E. K., & White, P. C. (2011). Preliminary studies related to anti‐interleukin‐1β therapy in children with newly diagnosed type 1 diabetes. Pediatric diabetes, 12(7), 656‒667. https://doi.org/10.1111/j.1399-5448.2011.00761.x.

Tate, M., Prakoso, D., Willis, A. M., Peng, C., Deo, M., Qin, C. X., Walsh, J. L., Nash, D. M., Cohen, C. D., Rofe, A. K., Sharma, A., Kiriazis, H., Donner, D. G., De Haan, J. B., Watson, A. M. D., De Blasio, M. J., & Ritchie, R. H. (2019). Characterising an alternative murine model of diabetic cardiomyopathy. Frontiers in physiology, 10, 1395. https://doi.org/10.3389/fphys.2019.01395

Widyananda, M. H., Pratama, S. K., Samoedra, R. S., Sari, F. N., Kharisma, V. D., Ansori, A. N. M., & Antonius, Y. (2021). Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. Journal of Pharmacy Pharmacognosy Reearchs, 9(4), 484‒496. https://doi.org/10.56499/jppres21.1047_9.4.484.

Wijaya, R. M., Hafidzhah, M. A., Kharisma, V. D., Ansori, A. N. M., & Parikesit, A. A. (2021). COVID-19 in silico drug with Zingiber officinale natural product compound library targeting the Mpro protein. Makara Journal of Science, 25. 162–171. https://doi.org/10.7454/mss.v25i3.1244

Downloads

Published

01-05-2024

How to Cite

Fatimah, N., Mustika, A., Sudjarwo, S. A., Fahruddin, A. C., & Anjarwati, L. (2024). An in silico study of the effects of chemical compounds in Petiveria alliacea leaf extract on inflammatory mediators. Pharmacy Education, 24(3), p. 153–158. https://doi.org/10.46542/pe.2024.243.153158