Vancomycin bioanalysis for TDM services by using immunoassay and HPLC: A scoping review

Authors

  • Vitarani Dwi Ananda Ningrum Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia https://orcid.org/0000-0003-0423-5555
  • Senya Puteri Amalia Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia
  • Ari Wibowo Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Indonesia https://orcid.org/0000-0001-6987-4388

DOI:

https://doi.org/10.46542/pe.2024.243.197203

Keywords:

High-performance liquid chromatography, Immunoassay, Therapeutic drug monitoring, Vancomycin

Abstract

Background: Administration of vancomycin in treating infections caused by Methicillin-resistant Staphylococcus aureus (MRSA) requires therapeutic drug monitoring (TDM). The immunoassay method and high-performance liquid chromatography (HPLC) are the two methods of choice for examining vancomycin levels, with their respective advantages.

Objective: This study aims to review the validity of immunoassay and HPLC methods, as well as consider which method is appropriate, effective, and efficient for TDM in the clinical setting.

Method: Related articles were searched for using the keywords "immunoassay", "vancomycin", "HPLC", "bioanalysis", and "human" in the PubMed, Google Scholar, and Science Direct databases.

Result: A total of 20 publications examined immunoassays, whereas 23 articles covered HPLC. Both the immunoassay and HPLC methods provided acceptable bioanalytical validation values.

Conclusion: The immunoassay method is an option for routine sample analysis that requires fast results, but this method is not recommended for patients with high immunoglobulin levels. The HPLC method is a choice because it offers better selectivity and sensitivity.

References

Abu-Shandi, K. H. (2009). Determination of vancomycin in human plasma using high-performance liquid chromatography with fluorescence detection. Analytical and Bioanalytical Chemistry, 395(2), 527–532. https://doi.org/10.1007/s00216-009-2948-9

Ackerman, B. H., Berg, H. G., Strate, R. G., & Rotschafer, J. C. (1983). Comparison of radioimmunoassay and fluorescent polarization immunoassay for quantitative determination of vancomycin concentrations in serum. Journal of Clinical Microbiology, 18(4), 994–995. https://doi.org/10.1128/jcm.18.4.994-995.1983

Anne, L., Hu, M., Chan, K., Colin, L., & Gottwald, K. (1989). Potential problem with fluorescence polarisation immunoassay cross-reactivity to vancomycin degradation product CDP-1: Its detection in sera of renally impaired patients. Therapeutic drug monitoring, 11(5), 585–91. https://doi.org/10.1097/00007691-198909000-00017

Berthoin, K., Ampe, E., Tulkens, P. M., & Carryn, S. (2009). Correlation between free and total vancomycin serum concentrations in patients treated for Gram-positive infections. International Journal of Antimicrobial Agents, 34(6), 555–560. https://doi.org/10.1016/j.ijantimicag.2009.08.005

Brozmanová, H., Kacířová, I., Uřinovská, R., Šištík, P., & Grundmann, M. (2017). New liquid chromatography-tandem mass spectrometry method for routine TDM of vancomycin in patients with both normal and impaired renal functions and comparison with results of polarisation fluoroimmunoassay in light of varying creatinine concentrations. Clinica Chimica Acta, 469, 136–143. https://doi.org/10.1016/j.cca.2017.04.003

Darwish, I. A. (2006). Immunoassay methods and their applications in pharmaceutical analysis: Basic methodology and recent advances. International journal of biomedical science: IJBS, 2(3), 217–35. https://pubmed.ncbi.nlm.nih.gov/23674985/

Das, R., Pal, T. K., Nandy, B. C., & Duttagupta, S. (2011). Development of method of analysis for estimating the Vancomycin in blood plasma by RP-HPLC method: Application to in vivo Studies. Der Pharmacia Lettre, 2(4), 201–210.

Demotes-Mainard, F., Labat, L., Vingon, G., & Bannwarth, B. (1994). Column-switching high-performance liquid chromatographic determination of vancomycin in serum. Therapeutic Drug Monitoring, 16(3), 293–297. https://doi.org/10.1097/00007691-199406000-00011

Farin, D., Piva, G. A., Gozlan, I., & Kitzes-Cohen, R. (1998). A modified HPLC method for the determination of vancomycin in plasma and tissues and comparison to FPIA (TDX). Journal of Pharmaceutical and Biomedical Analysis, 18(3), 367–372. https://doi.org/10.1016/s0731-7085(98)00095-8

Filburn, B. H., Shull, V. H., Tempera, Y. M., & Dick, J. D. (1983). Evaluation of an automated fluorescence polarization immunoassay for vancomycin. Antimicrobial Agents and Chemotherapy, 24(2), 216–220. https://doi.org/10.1128/aac.24.2.216

Ghassempour, A., Darbandi, M. K., & Asghari, F. S. (2001). Comparison of pyrolysis-mass spectrometry with high performance liquid chromatography for the analysis of vancomycin in serum. Talanta, 55(3), 573–580. https://doi.org/10.1016/s0039-9140(01)00460-x

Graziani, A. L., Lawson, L. A., Gibson, G. A., Steinberg, M. A., & McGregor, R. R. (1988). Vancomycin concentrations in infected and noninfected human bone. Antimicrobial Agents and Chemotherapy, 32(9), 1320–1322. https://doi.org/10.1128/aac.32.9.1320

Gunther, M., Saxinger, L., Gray, M., & LeGatt, D. (2013). Two suspected cases of immunoglobulin-mediated interference causing falsely low vancomycin concentrations with the Beckman PETINIA method. Annals of Pharmacotherapy, 47(4), 2–5. https://doi.org/10.1345/aph.1r566

Hagihara, M., Sutherland, C., & Nicolau, D. P. (2013). Development of HPLC methods for the determination of vancomycin in human plasma, mouse serum and bronchoalveolar lavage fluid. Journal of Chromatographic Science, 51(3), 201–207. https://doi.org/10.1093/chromsci/bms128

Van Hal, S. J., Paterson, D. L., & Lodise, T. P. (2013). Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrobial Agents and Chemotherapy, 57(2), 734–744. https://doi.org/10.1128/aac.01568-12

Hazarika, I. (2015). Therapeutic Drug Monitoring (TDM): An aspect of clinical pharmacology and pharmacy practice. Research & Reviews: A Journal of Pharmacology, 27–34.

Hu, M. W., Anne, L., Forni, T., & Gottwald, K. (1990). Measurement of vancomycin in renally impaired patient samples using a new high-performance liquid chromatography method with vitamin B12 internal standard: Comparison of high-performance liquid chromatography, emit, and fluorescence polarization immunoass. Therapeutic Drug Monitoring, 12(6), 562–569. https://doi.org/10.1097/00007691-199011000-00009

Jehl, F., Gallion, C., Thierry, R. C., & Monteil, H. (1985). Determination of vancomycin in human serum by high-pressure liquid chromatography. Antimicrobial Agents and Chemotherapy, 27(4), 503–507. https://doi.org/10.1128/aac.27.4.503

Jesús Valle, M. J. de, López, F. G., & Navarro, A. S. (2008). Development and validation of an HPLC method for vancomycin and its application to a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis, 48(3), 835–839. https://doi.org/10.1016/j.jpba.2008.05.040

Kees, M. G., Wicha, S. G., Seefeld, A., Kees, F., & Kloft, C. (2014). Unbound fraction of vancomycin in intensive care unit patients. Journal of Clinical Pharmacology, 54(3), 318–323. https://doi.org/10.1002/jcph.175

Khalilian, F., Hanzaki, S. A., & Yousefi, M. (2015). Synthesis of a graphene-based nanocomposite for the dispersive solid-phase extraction of vancomycin from biological samples. Journal of Separation Science, 38(6), 975–981. https://doi.org/10.1002/jssc.201401067

Li, L., Miles, M. V., Hall, W., & Carson, S. W. (1995). An Improved micromethod for vancomycin determination by high-performance liquid chromatography. Therapeutic Drug Monitoring, 17(4), 366–370. https://doi.org/10.1097/00007691-199508000-00009

Lima, T. D. M., Seba, K. S., Gonçalves, J. C. S., Cardoso, F. L. L., & Estrela, R. D. C. E. (2018). A rapid and simple HPLC method for therapeutic monitoring of vancomycin. Journal of Chromatographic Science, 56(2), 115–121. https://doi.org/10.1093/chromsci/bmx089

Lukša, J., & Marušič, A. (1995). Rapid high-performance liquid chromatographic determination of vancomycin in human plasma. Journal of Chromatography B: Biomedical Sciences and Applications, 667(2), 277–281. https://doi.org/10.1016/0378-4347(95)00033-f

Martin, C., Alaya, M., Mallet, M. N., Viviand, X., Ennabli, K., Said, R., & De Micco, P. (1994). Penetration of vancomycin into mediastinal and cardiac tissues in humans. Antimicrobial Agents and Chemotherapy, 38(2), 396–399. https://doi.org/10.2146/ajhp080434

Massias, L., Dubois, C., De Lentdecker, P., Brodaty, O., Fischler, M., & Farinotti, R. (1992). Penetration of vancomycin in uninfected sternal bone. Antimicrobial Agents and Chemotherapy, 36(11), 2539–2541. https://doi.org/10.1128/aac.36.11.2539

Monteiro, J. F., Hahn, S. R., Gonçalves, J., & Fresco, P. (2018). Vancomycin therapeutic drug monitoring and population pharmacokinetic models in special patient subpopulations. Pharmacology Research and Perspectives, 6(4). https://doi.org/10.1002/prp2.420

Morse, G. D., Nairn, D. K., Bertino, J. S., & Walshe, J. J. (1987). Overestimation of vancomycin concentrations utilizing fluorescence polarization immunoassay in patients on peritoneal dialysis. Ther Drug Monit, 9(2). https://doi.org/10.1097/00007691-198706000-00015

Odekerken, J. C. E., Logister, D. M. W., Assabre, L., Arts, J. J. C., Walenkamp, G. H. I. M., & Welting, T. J. M. (2015). ELISA-based detection of gentamicin and vancomycin in protein-containing samples. SpringerPlus, 4(1). https://doi.org/10.1186/s40064-015-1411-y

Oyaert, M., Peersman, N., Kieffer, D., Deiteren, K., Smits, A., Allegaert, K., Spriet, I., et al. (2015). Novel LC-MS/MS method for plasma vancomycin: Comparison with immunoassays and clinical impact. Clinica Chimica Acta, 441, 63–70. https://doi.org/10.1016/j.cca.2014.12.012

Pfaller, M. A., Krogstad, D. J., Granich, G. G., & Murray, P. R. (1984). Laboratory evaluation of five assay methods for vancomycin: Bioassay, high-pressure liquid chromatography, fluorescence polarization immunoassay, radioimmunoassay, and fluorescence immunoassay. Journal of Clinical Microbiology, 20(3), 311–316.

https://doi.org/10.1128/jcm.20.3.311-316.1984

Plock, N., Buerger, C., & Kloft, C. (2005). Successful management of discovered pH dependence in vancomycin recovery studies: Novel HPLC method for microdialysis and plasma samples. Biomedical Chromatography, 19(3), 237–244. https://doi.org/10.1002/bmc.446

Ristuccia, P. A., Ristuccia, A. M., Bidanset, J. H., & Cunha, B. A. (1984). Comparison of bioassay, high-performance liquid chromatography, and fluorescence polarisation immunoassay for quantitative determination of vancomycin in serum. Therapeutic Drug Monitoring, 6(2), 238–242. https://doi.org/10.1097/00007691-198406000-00019

Schwenzer, K. S., Wang, C. H. J., & Anhalt, J. P. (1983). Automated fluorescence polarization immunoassay for monitoring vancomycin. Therapeutic Drug Monitoring. https://doi.org/10.1097/00007691-198309000-00017

Setiabudy, R. (2011). Therapeutic drug monitoring: focus on conditions in Indonesia. Acta medica Indonesiana, 43(3), 208–211.

Simons, S. A., Molinelli, A. R., Sobhani, K., Rainey, P. M., & Hoofnagle, A. N. (2009). Two cases with unusual vancomycin measurements. Clinical Chemistry, 55(3), 578–580. https://doi.org/10.1373/clinchem.2008.112946

Singer, B., Stevens, R. W., Westley, B. P., & Nicolau, D. P. (2019). Falsely elevated vancomycin-concentration values from enzyme immunoassay leading to treatment failure. American Journal of Health-System Pharmacy, 77(1), 9–13. https://doi.org/10.1093/ajhp/zxz258

Sym, D., Smith, C., Meenan, G., & Lehrer, M. (2001). Fluorescence polarization immunoassay: Can it result in an overestimation of vancomycin in patients not suffering from renal failure? Therapeutic Drug Monitoring, 23(4), 441–444. https://doi.org/10.1097/00007691-200108000-00020

Tsoi, V., Bhayana, V., Bombassaro, A. M., Tirona, R. G., & Kittanakom, S. (2019). Falsely elevated vancomycin concentrations in a patient not receiving vancomycin. Pharmacotherapy, 39(7), 778–782. https://doi.org/10.1002/phar.2279

Usman, M., & Hempel, G. (2016). Development and validation of an HPLC method for the determination of vancomycin in human plasma and its comparison with an immunoassay (PETINIA). SpringerPlus, 5(1), 1–7. https://doi.org/10.1186/s40064-016-1778-4

Yeo, K. T., Traverse, W., & Horowitz, G. L. (1989). Clinical performance of the EMIT vancomycin assay. Clinical Chemistry, 35(7), 1504–1507. https://doi.org/10.20885/eksakta.vol19.iss1.art6

Zhang, M. (2014). Determination of vancomycin in human plasma, bone and fat by liquid chromatography/tandem mass spectrometry. Journal of Analytical & Bioanalytical Techniques, 5(3). https://doi.org/10.4172/2155-9872.1000196

Zhang, T., Watson, D. G., Azike, C., Tettey, J. N. A., Stearns, A. T., Binning, A. R., & Payne, C. J. (2007). Determination of vancomycin in serum by liquid chromatography-high resolution full scan mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 857(2), 352–356.

Downloads

Published

01-05-2024

How to Cite

Ningrum, V. D. A., Amalia, S. P., & Wibowo, A. (2024). Vancomycin bioanalysis for TDM services by using immunoassay and HPLC: A scoping review. Pharmacy Education, 24(3), p. 197–203. https://doi.org/10.46542/pe.2024.243.197203