Zebrafish as a model for the study of wound healing in hyperglycemia

Authors

DOI:

https://doi.org/10.46542/pe.2024.243.111115

Keywords:

Animal model, Gene, Hyperglycemia, Regeneration, Wound healing, Zebrafish

Abstract

Background: For preclinical studies of diabetic wound therapy, zebrafish have many orthologous signalling pathways that play essential roles in wound healing and regeneration.

Objectives: This study compares the expression of four essential wound-healing genes and caudal fin regeneration in hyperglycemic zebrafish (Danio rerio) to normal zebrafish.

Methods: Hyperglycemia was induced by using the intraperitoneal injection method with 350 mg/BW streptozotocin on days one, three, and five. The regeneration of the zebrafish's caudal fin was observed on day 5 after amputation using a stereomicroscope, followed by sampling of the blastema to analyse gene expression. Caudal fin regeneration was analysed using Zeiss Zen 3.3 blue documentation; blood glucose levels were measured using a glucometer; and relative gene expression analysis of sonic hedgehog (shh), insulin-like growth factor 2a (igf2a), bone morphogenetic protein 2b (bmp2b), collagen 1a2 (col1a2) was performed by qRT-PCR method.

Results: The glucose level in the hyperglycemia group was 203.2 mg/dL, and that in the normal group was 59.5 mg/dL. The authors found that igf2a, shh, bmp2b, and col1a2 expression were all downregulated in the hyperglycemia group and decreased in caudal fin regeneration.

Conclusion: This novel adult zebrafish model of hyperglycemia significantly impairs gene expression and caudal fin regeneration.

References

Abdullah, N. R., Mohd Nasir, M. H., Azizan, N. H., Wan-Mohtar, W. A. A. Q. I., & Sharif, F. (2022). Bioreactor-grown exo- and endo-β-glucan from Malaysian Ganoderma lucidum: An in vitro and in vivo study for potential antidiabetic treatment. Frontiers in Bioengineering and Biotechnology, 10, 960320. https://doi.org/10.3389/fbioe.2022.960320

Avaron, F., Smith, A., & Akimenko, M.-A. (2013). Sonic hedgehog signaling in the developing and regenerating fins of zebrafish. In: Madame Curie Bioscience Database. Landes Bioscience. https://www.ncbi.nlm.nih.gov/books/NBK6368/

Batubara, I., & Prastya, M. E. (2020). Potential use of Indonesian medicinal plants for cosmetic and oral health: A review. Jurnal Kimia Valensi, 6(1), 120–134. https://doi.org/10.15408/jkv.v6i1.16252

Chahardehi, A. M., Arsad, H., & Lim, V. (2020). Zebrafish as a successful animal model for screening toxicity of medicinal plants. Plants, 9(10), 1–35. https://doi.org/10.3390/plants9101345

Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., Park, T. S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., Norotte, C., Teng, P. N., Traas, J., Schugar, R., Deasy, B. M., Badylak, S., Buhring, H. J., Giacobino, J. P., Lazzari, L., Huard, J., & Péault, B. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell stem cell, 3(3), 301–313. https://doi.org/10.1016/j.stem.2008.07.003

Domínguez-Oliva, A., Hernández-Ávalos, I., Martínez-Burnes, J., Olmos-Hernández, A., Verduzco-Mendoza, A., & Mota-Rojas, D. (2023). The importance of animal models in biomedical research: Current insights and applications. Animals, 13(7), 1223. https://doi.org/10.3390/ani13071223

Goldsmith, J. R., & Jobin, C. (2012). Think small: Zebrafish as a model system of human pathology. Journal of Biomedicine and Biotechnology, 2012. https://doi.org/10.1155/2012/817341

Goldsmith, P. (2004). Zebrafish as a pharmacological tool: the how, why and when. Current opinion in pharmacology, 4(5), 504–512. https://doi.org/10.1016/j.coph.2004.04.005

Halloran, D., Durbano, H. W., & Nohe, A. (2020). Bone morphogenetic protein-2 in development and bone homeostasis. Journal of Developmental Biology, 8(3), 19. https://doi.org/10.3390/jdb8030019

Howe, K., Clark, M. D., Torroja, C. F., Torrance, J., Berthelot, C., Muffato, M., Collins, J. E., Humphray, S., McLaren, K., Matthews, L., McLaren, S., Sealy, I., Caccamo, M., Churcher, C., Scott, C., Barrerr, J. C., Koc, R., Rauch, G. J., White, S., Chow, W., Kilian, B., Quintais, L. T., Guerra-Assuncao, J. A., Zhou, Y., Stemple, D. L. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496(7446), 498–503. https://doi.org/10.1038/nature12111

Intine, R. V., Olsen, A. S., & Sarras, M. P. (2013). A zebrafish model of diabetes mellitus and metabolic memory. Journal of visualized experiments: JoVE, 72, 1–7. https://doi.org/10.3791/50232

Khan, F. R., & Alhewairini, S. S. (2018). Zebrafish (Danio rerio) as a model organism. Intechopen. https://doi.org/10.5772/intechopen.81517

Lieschke, G. J., & Currie, P. D. (2007). Animal models of human disease: zebrafish swim into view. Nature Reviews Genetics, 8(5), 353–367. https://doi.org/10.1038/nrg2091

Morikane, D., Zang, L., & Nishimura, N. (2020). Evaluation of the percutaneous absorption of drug molecules in zebrafish. Molecules, 25(17), 1–12. https://doi.org/10.3390/molecules25173974

OECD. (2013). OECD guidelines for testing of chemicals. Dermatotoxicology, 509–511. https://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm

Sanapalli, B. K. R., Yele, V., Singh, M. K., Thaggikuppe Krishnamurthy, P., & Karri, V. V. S. R. (2021). Preclinical models of diabetic wound healing: A critical review. Biomedicine and Pharmacotherapy, 142, 111946. https://doi.org/10.1016/j.biopha.2021.111946

Sasmal, S., & Chakraverty, R. (2020). The zebrafish model of diabetes mellitus: a re-appraisal, 7(1), 1–3. https://austinpublishinggroup.com/endocrinology-diabetes/fulltext/ajed-v7-id1074.php

Sumbayak, E. M. (2015). Literature review fibroblasts: Structure and role in wound healing. Jurnal Kedokteran Meditek, 21(6), 1–6. [http://ejournal.ukrida.ac.id/ojs/index.php/Meditek/article/view/1169]

Utami, N.. (2018). Zebrafish (Danio rerio) as an animal model for diabetes mellitus. BioTrends, 9(1). https://terbitan.biotek.lipi.go.id/index.php/biotrends/article/download/224/194]

Valluru, M., Staton, C. A., Reed, M. W. R., & Brown, N. J. (2011). Transforming growth factor-β and endoglin signaling orchestrate wound healing. Frontiers in Physiology, 2, 1–12. https://doi.org/10.3389/fphys.2011.00089

Wibowo, I., Utami, N., Anggraeni, T., Barlian, A., Putra, R. E., Indriani, A. D., Masadah, R., et al. (2021). Propolis can improve caudal fin regeneration in zebrafish (Danio rerio) induced by the combined administration of alloxan and glucose, Zebrafish, 18(4), 1–8. https://doi.org/10.1089/zeb.2020.1969

Zhu, Z. X., Sun, C. C., Ting Zhu, Y., Wang, Y., Wang, T., Chi, L. S., Cai, W. H., Zheng, J. Y., Zhou, X., Cong, W. T., Li, X. K., & Jin, L. T. (2017). Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration. Experimental cell research, 355(2), 83–94. https://doi.org/10.1016/j.yexcr.2017.03.054

Zang, L., Maddison, L. A., & Chen, W. (2018). Zebrafish as a model for obesity and diabetes. Frontiers in cell and developmental biology, 6, 91. https://doi.org/10.3389/fcell.2018.00091

Downloads

Published

01-05-2024

How to Cite

Nurkhasanah, L., Hayati, F., & Istikharah, R. (2024). Zebrafish as a model for the study of wound healing in hyperglycemia. Pharmacy Education, 24(3), p. 111–115. https://doi.org/10.46542/pe.2024.243.111115