5-O-Acetylpinostrobin derivatives inhibit estrogen alpha and progesterone receptors through a molecular docking approach

Authors

  • Anita Puspa Widiyana Doctoral Programme of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia & Department of Pharmacy, Faculty of Medicine, Universitas Islam Malang, Malang, Indonesia https://orcid.org/0000-0002-6342-2855
  • Tri Widiandani Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Indonesia
  • Siswandono Siswodihardjo Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.243.244250

Keywords:

5-O-acetylpinostrobin, Breast cancer, Molecular docking

Abstract

Background: Among all cancers, breast cancer accounts for 11.7% of new cases and 6.9% of deaths worldwide. This is driven by increased estrogen receptor alpha (ERα) and progesterone receptor (PgR) expression. Many breast cancer drugs cause various side effects. Modifying the structure of pinostrobin by adding acyl groups to obtain 5-O-acetylpinostrobin derivatives can increase its activity and selectivity.

Objective: This study aimed to predict the interaction of 5-O-acetylpinostrobin derivatives with ERα and PgR.

Method: A molecular docking approach using AutodockTool. The Protein Data Bank (PDB) was used to obtain ID 3ERT (ERα) and 2W8Y (PgR).

Result: The analysis showed the value of free energy binding (ΔG) to ERα with a range of -8.58 to -5.76 kcal/mol and an inhibition concentration (Ki) of 0.51 to 59.91 μM. PgR had ΔG values of -12.37 to -8.30 kcal/mol and Ki of 0.86 to 830.64 nM.

Conclusion: The study showed that 5-O-4-(dimethylamino)benzoylpinostrobin, 5-O-cyclohexancarbonylpinostrobin, 5-O-2-phenylacetylpinostrobin, 5-O-3-phenylpropanoylpinostrobin, and 5-O-cyclobutanecarbonylpinostrobin have the potential to be synthesised and serve as the basis for the development of new anticancer compounds that inhibit ERα and PgR in breast cancer.

References

Acharya, R., Chacko, S., Bose, P., Lapenna, A., & Pattanayak, S. P. (2019). Structure based multitargeted molecular docking analysis of selected furanocoumarins against breast cancer. Scientific Reports, 9(1), 15743. https://doi.org/10.1038/s41598-019-52162-0

Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, W., Liu, B., Lei, Y., Du, S., Vuppalapati, A., Luu, H. H., Haydon, R. C., He, T. C., & Ren, G. (2018). Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes and Diseases, 5(2), 77–106. https://doi.org/10.1016/j.gendis.2018.05.001

Hilton, H. N., Clarke, C. L., & Graham, J. D. (2018). Estrogen and progesterone signalling in the normal breast and its implications for cancer development. Molecular and Cellular Endocrinology, 466, 2–14. https://doi.org/10.1016/j.mce.2017.08.011

International Agency for Research on Cancer. (2020). Cancer today. https://gco.iarc.fr/today/online

Jones, A. A., & Gehler, S. (2020). Acacetin and pinostrobin inhibit malignant breast epithelial cell adhesion and focal adhesion formation to attenuate cell migration. Integrative Cancer Therapies, 19. https://doi.org/10.1177/1534735420918945

Lashen, A. G., Toss, M. S., Mongan, N. P., Green, A. R., & Rakha, E. A. (2023). The clinical value of progesterone receptor expression in luminal breast cancer: A study of a large cohort with long-term follow-up. Cancer, 129(8), 1183–1194. https://doi.org/10.1002/cncr.34655

Mani, S., Swargiary, G., Gulati, S., Gupta, S., & Jindal, D. (2023). Molecular docking and ADMET studies to predict the anti-breast cancer effect of aloin by targeting estrogen and progesterone receptors. Materials Today: Proceedings, 80, 2378–2384. https://doi.org/10.1016/j.matpr.2021.06.362

Mehmood, Y., Anwar, F., Saleem, U., Hira, S., Ahmad, B., Bashir, M., Imtiaz, M. T., Najm, S., & Ismail, T. (2021). The anti-cancer potential of 2,4,6 tris-methyphenylamino1,3,5-triazine compound against mammary glands cancer: Via down-regulating the hormonal, inflammatory mediators, and oxidative stress. Life Sciences, 285, 119994. https://doi.org/10.1016/j.lfs.2021.119994

Norhayati, Ekowati, J., Diyah, N. W., Tejo, B. A., & Ahmed, S. (2023). Chemoinformatics approach to design and develop vanillin analogs as COX-1 inhibitor. Journal of Public Health in Africa, 14(S1), 2517. https://doi.org/10.4081/jphia.2023.2517

Ongwisespaiboon, O., & Jiraungkoorskul, W. (2017). Fingerroot, Boesenbergia rotunda and its aphrodisiac activity. Pharmacognosy Reviews, 11(21), 27–30. https://doi.org/10.4103/phrev.phrev_50_16

Patel, N. K., Jaiswal, G., & Bhutani, K. K. (2016). A review on biological sources, chemistry and pharmacological activities of pinostrobin. Natural Product Research, 30(18), 2017–2027. https://doi.org/10.1080/14786419.2015.1107556

Poerwono, H., Sasaki, S., Hattori, Y., & Higashiyama, K. (2010). Bioorganic & medicinal chemistry letters efficient microwave-assisted prenylation of pinostrobin and biological evaluation of its derivatives as antitumor agents. Bioorganic & Medicinal Chemistry Letters, 20(7), 2086–2089. https://doi.org/10.1016/j.bmcl.2010.02.068

Praditapuspa, E. N., Siswandono, & Widiandani, T. (2021). In silico analysis of pinostrobin derivatives from boesenbergia pandurata on ErbB4 kinase target and QSPR linear models to predict drug clearance for searching anti-breast cancer drug candidates. Pharmacognosy Journal, 13(5), 1143–1149. https://doi.org/10.5530/pj.2021.13.147

Siswandono, Widyowati, R., Suryadi, A., Widiandani, T., & Prismawan, D. (2020). Molecular modeling, synthesis, and qsar of 5-o-acylpinostrobin derivatives as promising analgesic agent. Rasayan Journal of Chemistry, 13(4), 2559–2568. https://doi.org/10.31788/RJC.2020.1345749

Sukardiman, Widyawaruyanti, A., Widyowati, R., Sismindari, & Zaini, N. C. (2014). Pinostrobin isolated from Kaempferia pandurata Roxb induced apoptosis in T47D human breast cancer cell line. E-Journal Planta Husada, 2(1), 20–26.

TilakVijay, J., Vivek Babu, K., & Uma, A. (2019). Virtual screening of novel compounds as potential erα inhibitors. Bioinformation, 15(5), 321–332. https://doi.org/10.6026/97320630015321

Downloads

Published

01-05-2024

How to Cite

Widiyana, A. P., Widiandani, T., & Siswodihardjo, S. (2024). 5-O-Acetylpinostrobin derivatives inhibit estrogen alpha and progesterone receptors through a molecular docking approach. Pharmacy Education, 24(3), p. 244–250. https://doi.org/10.46542/pe.2024.243.244250