Distribution of genetic polymorphism of the PTP1B gene in diabetes mellitus patients taking insulin therapy in Indonesia: A narrative review

Authors

  • Nafrizal Fakhruzain Faculty of Military Pharmacy, The Republic of Indonesia Defense University, Bogor, Indonesia
  • Syahrul Tuba Faculty of Military Pharmacy, The Republic of Indonesia Defense University, Bogor, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.246.99104

Keywords:

Diabetes mellitus, Insulin therapy, Polymorphism, PTP1B

Abstract

Background: Diabetes mellitus is a metabolic disease directly related to the onset of hyperglycemia, which occurs due to abnormalities in insulin secretion, insulin action, or both. Protein Tyrosine Phosphatase 1B (PTP1B) from insulin receptor signal transduction has a role in the pathogenesis of diabetes mellitus.

Objective: To briefly present the distribution of genetic polymorphism of the PTP1B gene in diabetes mellitus patients taking insulin therapy.

Method: A narrative review was conducted by collecting scientific journals in English from several leading platforms, such as PubMed, CrossRef, and Google Scholar, published from 2012 to 2023.

Result: PTP1B can inhibit glucose transporter type 4 (GLUT4) activation in glucose uptake by cells, increasing glucose levels. The use of exogenous insulin becomes ineffective, and insulin resistance occurs. This study has limitations and needs additional prospective investigations to corroborate the findings.

Conclusion: In some studies, PTP1B gene polymorphism in diabetes mellitus patients strongly correlates with insulin therapy. PTP1B gene polymorphism can cause insulin resistance because PTP1B and GLUT4 have the opposite effect.

References

Ali, Y., Kim, D. H., Seong, S. H., Kim, H. R., Jung, H. A., & Choi, J. S. (2017). α-Glucosidase and protein tyrosine phosphatase 1b inhibitory activity of plastoquinones from marine brown alga sargassum serratifolium. Marine Drugs, 15(12). https://doi.org/10.3390/md15120368

American Diabetes Association (2016). Standards of medical care in diabetes-2016 abridged for primary care providers clinical diabetes. A publication of the American Diabetes Association, 34(1), 3–21. https://doi.org/10.2337/diaclin.34.1.3

Cederberg, H., & Laakso, M. (2014). Obesity and type 2 diabetes. Handbook of Obesity: Epidemiology, Etiology, and Physiopathology, Third Edition, 1(4), 539–548. https://doi.org/10.4236/jdm.2011.14012

Deshmukh, A. S. (2016). Insulin-stimulated glucose uptake in healthy and insulin-resistant skeletal muscle. Hormone Molecular Biology and Clinical Investigation, 26(1), 13–24. https://doi.org/10.1515/hmbci-2015-0041

Furtado, L. F. V., Magalhães, J. G. S., & Rabelo, É. M. L. (2018). Standardization and application of a modified RFLP-PCR methodology for analysis of polymorphisms linked to treatment resistance in Ancylostoma braziliense. Parasites and Vectors, 11(1), 1–6. https://doi.org/10.1186/s13071-018-3125-9

Gupta V. (2012). Pleiotropic effects of incretins. Indian Journal of Endocrinology and Metabolism, 16 Suppl 1(Suppl1), S47–S56. https://doi.org/10.4103/2230-8210.94259

Hashim, H. O., & Al-Shuhaib, M. B. S. (2019). Exploring the potential and limitations of PCR-RFLP and PCR-SSCP for SNP detection: A review. Journal of Applied Biotechnology Reports, 6(4), 137–144. https://doi.org/10.29252/JABR.06.04.02

International Diabetes Federation (IDF). (2021). IDF Diabetes Atlas, 10th ed. International Diabetes Federation. https://www.diabetesatlas.org

Jiang, C. S., Liang, L. F., & Guo, Y. W. (2012). Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades. Acta Pharmacologica Sinica, 33(10), 1217–1245. https://doi.org/10.1038/aps.2012.90

Kemenkes RI. (2018). Hasil Riset Kesehatan Dasar Tahun 2018. Kementrian Kesehatan RI, 53(9), 1689–1699.

Kim, Y., Choi, S. J., & Choi, C. (2017). An efficient PCR-RFLP method for the rapid identification of Korean pyropia species. Molecules, 22(12), 1–8. https://doi.org/10.3390/molecules22122182

Komatsu, T., Park, S., Hayashi, H., Mori, R., Yamaza, H., & Shimokawa, I. (2019). Mechanisms of calorie restriction: A review of genes required for the life-extending and tumor-inhibiting effects of calorie restriction. Nutrients, 11(12). https://doi.org/10.3390/nu11123068

Leto, D., & Saltiel, A. R. (2012). Regulation of glucose transport by insulin: traffic control of GLUT4. Nature reviews. Molecular Cell Biology, 13(6), 383–396. https://doi.org/10.1038/nrm3351

Liu, R., Mathieu, C., Berthelet, J., Zhang, W., Dupret, J. M., & Rodrigues Lima, F. (2022). Human protein tyrosine phosphatase 1B (PTP1B): From structure to clinical inhibitor perspectives. International Journal of Molecular Sciences, 23(13). https://doi.org/10.3390/ijms23137027

Minard, A. Y., Wong, M. K., Chaudhuri, R., Tan, S. X., Humphrey, S. J., Parker, B. L., Yang, J. Y., Laybutt, D. R., Cooney, G. J., Coster, A. C., Stöckli, J., & James, D. E. (2016). Hyperactivation of the insulin signaling pathway improves intracellular proteostasis by coordinately up-regulating the proteostatic machinery in adipocytes. The Journal of Biological Chemistry, 291(49), 25629–25640. https://doi.org/10.1074/jbc.M116.741140

Mok, A., Cao, H., Zinman, B., Hanley, A. J. G., Harris, S. B., Kennedy, B. P., & Hegele, R. A. (2002). A single nucleotide polymorphism in protein tyrosine phosphatase PTP-1B is associated with protection from diabetes or impaired glucose tolerance in oji-cree. Journal of Clinical Endocrinology and Metabolism, 87(2), 724–727. https://doi.org/10.1210/jcem.87.2.8253

Müller, T. D., Finan, B., Bloom, S. R., D'Alessio, D., Drucker, D. J., Flatt, P. R., Fritsche, A., Gribble, F., Grill, H. J., Habener, J. F., Holst, J. J., Langhans, W., Meier, J. J., Nauck, M. A., Perez-Tilve, D., Pocai, A., Reimann, F., Sandoval, D. A., Schwartz, T. W., Seeley, R. J., … Tschöp, M. H. (2019). Glucagon-like peptide 1 (GLP-1). Molecular Metabolism, 30, 72–130. https://doi.org/10.1016/j.molmet.2019.09.010

Nässel, D. R., & Vanden Broeck, J. (2016). Insulin/IGF signaling in Drosophila and other insects: Factors that regulate production, release and post-release action of the insulin-like peptides. Cellular and Molecular Life Sciences: CMLS, 73(2), 271–290. https://doi.org/10.1007/s00018-015-2063-3

Permana, H., Kariadi, S. H. K., & Ahmad, T. H. (2018). (X aim) The role of polymorphism Gly972Arg IRS-1 gene and C981T PTP-1B gene on insulin resistance young adult subjects with low birth weight history. Journal of Research in Medical and Dental Science, 6(1), 204–208. https://doi.org/10.24896/jrmds.20186133

Perry, R. T., Dwivedi, H., & Aissani, B. (2012). A simple PCR-RFLP method for genetic phase determination in compound heterozygotes. Frontiers in Genetics, 2(JAN), 3–6. https://doi.org/10.3389/fgene.2011.00108

Pouryasin, M., Sharafi, H., Behnava, B., Alavian, S. M., Keshvari, M., & Pouryasin, A. (2017). A simple PCR-RFLP method for genotyping of IFNL4 rs368234815 polymorphism in patients with chronic hepatitis C. Lab Medicine, 48(1), 51–56. https://doi.org/10.1093/labmed/lmw060

Priefer, R. (2020). PTP1B Inhibitors as potential target for Type II diabetes. Current Research in Diabetes & Obesity Journal, 14(1), 1–13. https://doi.org/10.19080/crdoj.2020.14.555876

Rocha, S., Corvo, M. L., Fernandes, E., & Freitas, M. (2022). The emerging target protein tyrosine phosphatase 1B (PTP1B) for type 2 diabetes mellitus management. Journal of Diabetes and Clinical Research, 3(4), 99–105. https://doi.org/10.33696/diabetes.3.048

Rujito, L., Fauziyah, F., Azizah, E. F., Santosa, Q., Hapsari, A. T., Anjarwati, D. U., & Arjadi, F. (2019). Scanning SNPs of diabetes mellitus related genes; HNF4A, PTPN, KCNJ11, PPAR gamma among thalassemia patients: A preliminary study. IOP Conference Series: Earth and Environmental Science, 255(1). https://doi.org/10.1088/1755-1315/255/1/012008

Sorli, C. (2014). New developments in insulin therapy for type 2 diabetes. American Journal of Medicine, 127(10), S39–S48. https://doi.org/10.1016/j.amjmed.2014.07.006

Sun, J., Qu, C., Wang, Y., Huang, H., Zhang, M., Li, H., Zhang, Y., Wang, Y., & Zou, W. (2016). PTP1B, A potential target of type 2 diabetes mellitus. Molecular Biology, 05(04), 1–6. https://doi.org/10.4172/2168-9547.1000174

Tarhan, G. (2017). The place and importance of PCR-RFLP method in determination of Mycobacteria species in routine laboratory practice. Advances in Biotechnology & Microbiology, 3(3), 57–61. https://doi.org/10.19080/aibm.2017.03.555612

Tsou, R. C., & Bence, K. K. (2012). The genetics of PTPN1 and obesity: Insights from mouse models of tissue-specific PTP1B deficiency. Journal of Obesity, 2012. https://doi.org/10.1155/2012/926857

Yamakage, H., Konishi, Y., Muranaka, K., Hotta, K., Miyamoto, Y., Morisaki, H., Morisaki, T., & Satoh-Asahara, N. (2021). Association of protein tyrosine phosphatase 1B gene polymorphism with the effects of weight reduction therapy on body weight and glycolipid profiles in obese patients. Journal of Diabetes Investigation, 12(8), 1462–1470. https://doi.org/10.1111/jdi.13492

Zhang, B., Wang, Y., Xu, X., Guan, X., & Bai, Y. (2013). Using PCR-RFLP technology to teach single nucleotide polymorphism for undergraduates. Biochemistry and Molecular Biology Education, 41(4), 262–266. https://doi.org/10.1002/bmb.20705

Downloads

Published

14-06-2024

How to Cite

Fakhruzain, N., & Tuba, S. (2024). Distribution of genetic polymorphism of the PTP1B gene in diabetes mellitus patients taking insulin therapy in Indonesia: A narrative review. Pharmacy Education, 24(6), p. 99–104. https://doi.org/10.46542/pe.2024.246.99104