Review of natural antioxidant plants to overcome the neurotoxic effects of methamphetamine

Authors

  • Sastha Sugih Arto Faculty of Military Pharmacy, Republic of Indonesia Defence University, Bogor, West Java, Indonesia
  • Reynatha C. A. Pangsibidang Faculty of Military Pharmacy, Republic of Indonesia Defense University, Bogor, West Java, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.246.5972

Keywords:

Aronia melanocarpa, Lethal dose 50, Methamphetamine, Natural antioxidant plant

Abstract

Background: Methamphetamine (METH) is a psychostimulant substance known for its substantial abuse potential and neurotoxic properties. METH is a second-line drug in certain conditions such as Attention Deficit Hyperactivity Disorder (ADHD), severe obesity, or narcolepsy.

Objective: This study aims to compare natural plant antioxidants to overcome neurotoxicity caused by methamphetamine.

Method: The authors used a literature review method and collected articles from "PubMed", "Google Scholar", "ScienceDirect", "Scopus" from 2010 - 2023 without excluding old works that are often cited and trusted using the terms “Methamphetamine”, “Neurotoxicity”, “Ipomoea batatas L.”, “Scutellaria baicaleinsis Georgi ”, “Cinnamomum cassia”, “Laurus nobilis L.”, “Aronia melanocarpa”, “Tripterygium wilfordii Hook. f.”, “Gingko biloba L.”, "Centella asiatica (L.)", "Curcuma longa Linn.", "Brassia oleracea L." as inclusion criteria.

Result: Several reviewed natural antioxidant plants exhibit pathways and substantial evidence from both in vivo and in vitro studies addressing methamphetamine-induced neurotoxicity. However, Aronia melanocarpa demonstrates a superior LD50 profile, making it the safest choice for consumption.

Conclusion: Aronia melanocarpa had the highest LD50 value at 5 g/kg of body weight. Further research is needed to investigate the efficacy of Aronia melanocarpa in addressing methamphetamine-induced neurotoxicity.

References

Adnyana, I. M. O., Sudewi, A. A. R., Samatra, D. P. G. P., & Suprapta, D. N. (2018). Neuroprotective effects of purple sweet potato balinese cultivar in wistar rats with ischemic stroke. Open Access Macedonian Journal of Medical Sciences, 6(11), 1959–1964. https://doi.org/10.3889/oamjms.2018.435

Ahles, S., Stevens, Y. R., Joris, P. J., Vauzour, D., Adam, J., Groot, E. de, & Plat, J. (2020). The effect of long-term aronia melanocarpa extract supplementation on cognitive performance, mood, and vascular function: A randomized controlled trial in healthy, middle-aged individuals. Nutrients, 12(8), 1–16. https://doi.org/10.3390/nu12082475

Caputo, L., Nazzaro, F., Souza, L. F., Aliberti, L., De Martino, L., Fratianni, F., Coppola, R., & De Feo, V. (2017). Laurus nobilis: Composition of essential oil and its biological activities. Molecules, 22(6). https://doi.org/10.3390/molecules22060930

Damayanti, M. M., Indriyanti, R. A., Kharisma, Y., Andriane, Y., Lantika, U. A., Damailia, R., & Rachmawati, M. (2022). Histopathology of nephrotoxicity associated with administered water extract purple sweet potato (Ipomoea batatas) in mice (Mus musculus) in stratified phases of sose. Global Medical & Health Communication (GMHC), 10(3). https://doi.org/10.29313/gmhc.v10i3.9662

Der-Ghazarian, T. S., Charmchi, D., Noudali, S. N., Scott, S. N., Holter, M. C., Newbern, J. M., & Neisewander, J. L. (2019). Neural circuits associated with 5-HT1B receptor agonist inhibition of methamphetamine seeking in the conditioned placepreference model. ACS Chemical Neuroscience, 10(7), 3271–3283. https://doi.org/10.1021/acschemneuro.8b00709

Dietrich-Muszalska, A., Kopka, J., & Kontek, B. (2014). Polyphenols from berries of Aronia melanocarpa reduce the plasma lipid peroxidation induced by ziprasidone. Schizophrenia Research and Treatment, 2014, 1–7. https://doi.org/10.1155/2014/602390

Hadizadeh-Bazaz, M., Vaezi, G., khaksari, M., & Hojati, V. (2021). Curcumin attenuates spatial memory impairment by anti-oxidative, anti-apoptosis, and anti-inflammatory mechanism against methamphetamine neurotoxicity in male Wistar rats: Histological and biochemical changes. NeuroToxicology, 84, 208–217. https://doi.org/10.1016/j.neuro.2021.03.011

Ham, A., Kim, B., Koo, U., Nam, K. W., Lee, S. J., Kim, K. H., Shin, J., & Mar, W. (2010a). Spirafolide from bay leaf (Laurus nobilis) prevents dopamine-induced apoptosis by decreasing reactive oxygen species production in human neuroblastoma SH-SY5Y cells. Archives of Pharmacal Research, 33(12), 1953–1958. https://doi.org/10.1007/s12272-010-1210-5

Ham, A., Kim, B., Koo, U., Nam, K. W., Lee, S. J., Kim, K. H., Shin, J., & Mar, W. (2010b). Spirafolide from bay leaf (Laurus nobilis) prevents dopamine-induced apoptosis by decreasing reactive oxygen species production in human neuroblastoma SH-SY5Y cells. Archives of Pharmacal Research, 33(12), 1953–1958. https://doi.org/10.1007/s12272-010-1210-5

He, X., Wei, Z., Zhou, E., Chen, L., Kou, J., Wang, J., & Yang, Z. (2015). Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice. In International Immunopharmacology (Vol. 28, Issue 1, pp. 470–476). Elsevier B.V. https://doi.org/10.1016/j.intimp.2015.07.012

Jayanthi, S., Daiwile, A. P., & Cadet, J. L. (2021). Neurotoxicity of methamphetamine: Main effects and mechanisms. Experimental Neurology, 344. https://doi.org/10.1016/j.expneurol.2021.113795

Jurikova, T., Mlcek, J., Skrovankova, S., Sumczynski, D., Sochor, J., Hlavacova, I., Snopek, L., & Orsavova, J. (2017). Fruits of black chokeberry aronia melanocarpa in the prevention of chronic diseases. In Molecules (Vol. 22, Issue 6). MDPI AG. https://doi.org/10.3390/molecules22060944

Karila, L., Weinstein, A., Aubin, H. J., Benyamina, A., Reynaud, M., & Batki, S. L. (2010). Pharmacological approaches to methamphetamine dependence: A focused review. In British Journal of Clinical Pharmacology (Vol. 69, Issue 6, pp. 578–592). https://doi.org/10.1111/j.1365-2125.2010.03639.x

Kasote, D. M., Katyare, S. S., Hegde, M. V., & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International journal of biological sciences, 11(8), 982.

Kazeem, M. I., Ashafa, A. O. T., & Nafiu, M. O. (2015). Biological activities of three Nigerian spices – Laurus nobilis linn, Murraya koenigii (L) spreng and Thymus vulgaris linn. Tropical Journal of Pharmaceutical Research, 14(12), 2255–2261. https://doi.org/10.4314/tjpr.v14i12.15

Kelsey, N., Hulick, W., Winter, A., Ross, E., & Linseman, D. (2011). Neuroprotective effects of anthocyanins on apoptosis induced by mitochondrial oxidative stress. Nutritional Neuroscience, 14(6), 249–259. https://doi.org/10.1179/1476830511Y.0000000020

Liu, D., Zhang, Q., Luo, P., Gu, L., Shen, S., Tang, H., Zhang, Y., Lyu, M., Shi, Q., Yang, C., & Wang, J. (2022). Neuroprotective effects of celastrol in neurodegenerative diseases-unscramble its major mechanisms of action and targets. In Aging and Disease (Vol. 13, Issue 3, pp. 815–836). International Society on Aging and Disease. https://doi.org/10.14336/AD.2021.1115

Mizuno, K., Kume, T., Muto, C., Takada-Takatori, Y., Izumi, Y., Sugimoto, H., & Akaike, A. (2011). Glutathione biosynthesis via activation of the nuclear factor E2-related factor 2 (Nrf2) - Antioxidant-response element (ARE) pathway is essential for neuroprotective effects of sulforaphane and 6-(methylsulfinyl) hexyl isothiocyanate. Journal of Pharmacological Sciences, 115(3), 320–328. https://doi.org/10.1254/jphs.10257FP

Moratalla, R., Khairnar, A., Simola, N., Granado, N., García-Montes, J. R., Porceddu, P. F., Tizabi, Y., Costa, G., & Morelli, M. (2017). Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. In Progress in Neurobiology (Vol. 155, pp. 149–170). Elsevier Ltd. https://doi.org/10.1016/j.pneurobio.2015.09.011

Moszczynska, A. (2016). Neurobiology and clinical manifestations of methamphetamine neurotoxicity HHS public access. In Psychiatr Times (Vol. 33, Issue 9).

Moszczynska, A., & Callan, S. P. (2017). Molecular, behavioral, and physiological consequences of methamphetamine neurotoxicity: Implications for treatment. Journal of Pharmacology and Experimental Therapeutics, 362(3), 474–488. https://doi.org/10.1124/jpet.116.238501

Panda, V., & Sonkamble, M. (2012). 25-34 ©JK Welfare & Pharmascope Foundation. In Int. J. Res. Phytochem. Pharmacol (Vol. 2, Issue 1). https://www.researchgate.net/publication/268349061

Panenka, W. J., Procyshyn, R. M., Lecomte, T., MacEwan, G. W., Flynn, S. W., Honer, W. G., & Barr, A. M. (2013). Methamphetamine use: A comprehensive review of molecular, preclinical and clinical findings. In Drug and Alcohol Dependence (Vol. 129, Issue 3, pp. 167–179). https://doi.org/10.1016/j.drugalcdep.2012.11.016

Primatanti, P. A., & Jawi, I. M. (2019). Anthocyanin as neuroprotector for methamphetamine-induced neurotoxicity. International Journal of Health & Medical Sciences, 11–16. https://doi.org/10.31295/ijhms.v3n1.101

Qi, Q., Peng, J., Liu, W., You, Q., Yang, Y., Lu, N., Wang, G., & Guo, Q. (2009). Toxicological studies of wogonin in experimental animals. Phytotherapy Research, 23(3), 417–422. https://doi.org/10.1002/ptr.2645

Rashidi, R., Moallem, S. A., Moshiri, M., Hadizadeh, F., & Etemad, L. (2021). Protective effect of cinnamaldehyde on meth-induced neurotoxicity in pc12 cells via inhibition of apoptotic response and oxidative stress. Iranian Journal of Pharmaceutical Research, 20(2), 135–143. https://doi.org/10.22037/ijpr.2020.111891.13411

Saludung, J., Hamid, S., & Pramezwary, D. A. (2020). Development evaluation of various products from purple sweet potatoes (Ipomoea Batatas L. Poir).

Shamsuddin, N., Zain, M. M., Adenan, M. I., & Noorden, M. S. A. (2023). Ethanol extract of Centella asiatica improved methamphetamine-induced neurotoxicity on mouse model via stimulating superoxide Ddismutase II and microRNA-34A Expression. Sains Malaysiana, 52(1), 233–244. https://doi.org/10.17576/jsm-2023-5201-19

Sharma, H. S., Kiyatkin, E. A., Patnaik, R., Lafuente, J. V., Muresanu, D. F., Sjöquist, P. O., & Sharma, A. (2015). Exacerbation of methamphetamine neurotoxicity in cold and hot environments: Neuroprotective effects of an antioxidant compound H-290/51. Molecular Neurobiology, 52(2), 1023–1033. https://doi.org/10.1007/s12035-015-9252-9

Shrestha, P., Katila, N., Lee, S., Seo, J. H., Jeong, J. H., & Yook, S. (2022). Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. In Biomedicine and Pharmacotherapy (Vol. 154). Elsevier Masson s.r.l. https://doi.org/10.1016/j.biopha.2022.113591

Song, C. ying, Xu, Y. ge, & Lu, Y. qiang. (2020). Use of tripterygium wilfordii Hook F for immune-mediated inflammatory diseases: Progress and future prospects. In Journal of Zhejiang University: Science B (Vol. 21, Issue 4, pp. 280–290). Zhejiang University Press. https://doi.org/10.1631/jzus.B1900607

Sun, L., Dong, H., Guo, C., Qian, J., Sun, J., Ma, L., & Zhu, A. C. (2006). Larvicidal activity of extracts of Ginkgo biloba exocarp for three different strains of Culex pipiens pallens. In J. Med. Entomol, 43(2).

Tao, X., & Lipsky, P. E. (n.d.). The Chinese anti-inflammatory and immunosuppressive herbal remedy Tripterygium wilfordii Hook F.

Thounaojam, M. C., Jadeja, R. N., Sankhari, J. M., Devkar, R. V., & Ramachandran, A. V. (2011). Safety evaluations on ethanolic extract of red cabbage (Brassica oleracea L.) in mice. Journal of Food Science, 76(1). https://doi.org/10.1111/j.1750-3841.2010.01962.x

Wu, P. H., Shen, Y. C., Wang, Y. H., Chi, C. W., & Yen, J. C. (2006a). Baicalein attenuates methamphetamine-induced loss of dopamine transporter in mouse striatum. Toxicology, 226(2–3), 238–245. https://doi.org/10.1016/j.tox.2006.06.015

Xie, X. L., He, J. T., Wang, Z. T., Xiao, H. Q., Zhou, W. T., Du, S. H., Xue, Y., & Wang, Q. (2018). Lactulose attenuates METH-induced neurotoxicity by alleviating the impaired autophagy, stabilizing the perturbed antioxidant system and suppressing apoptosis in rat striatum. Toxicology Letters, 289, 107–113. https://doi.org/10.1016/j.toxlet.2018.03.015

Yadav, M. K., Singh, S. K., Singh, M., Mishra, S. S., Singh, A. K., Tripathi, J. S., & Tripathi, Y. B. (2019). In vivo toxicity study of ethanolic extracts of evolvulus alsinoides & centella asiatica in swiss albino mice. Open Access Macedonian Journal of Medical Sciences, 7(7), 1071–1076. https://doi.org/10.3889/oamjms.2019.209

Yang, X., Wang, Y., Li, Q., Zhong, Y., Chen, L., Du, Y., He, J., Liao, L., Xiong, K., Yi, C. X., & Yan, J. (2018). The main molecular mechanisms underlying methamphetamine-induced neurotoxicity and implications for pharmacological treatment. In Frontiers in Molecular Neuroscience (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fnmol.2018.00186

Yu, S., Zhu, L., Shen, Q., Bai, X., & Di, X. (2015). Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behavioural neurology, 2015.

Yuan, Q., Wang, C. wen, Shi, J., & Lin, Z. xiu. (2017). Effects of Ginkgo biloba on dementia: An overview of systematic reviews. In Journal of Ethnopharmacology (Vol. 195, pp. 1–9). Elsevier Ireland Ltd. https://doi.org/10.1016/j.jep.2016.12.005

Yun, J. W., You, J. R., Kim, Y. S., Kim, S. H., Cho, E. Y., Yoon, J. H., Kwon, E., Jang, J. J., Park, J. S., Kim, H. C., Che, J. H., & Kang, B. C. (2018). In vitro and in vivo safety studies of cinnamon extract (Cinnamomum cassia) on general and genetic toxicology. Regulatory Toxicology and Pharmacology, 95, 115–123. https://doi.org/10.1016/j.yrtph.2018.02.017

Yustinianus, R. R., Wunas, J., Rifai, Y., Ramli, N., Tinggi Ilmu Farmasi Makassar, S., Perintis Kemerdekaan Km, J., Selatan, S., Kurkumin Dari Ekstrak Beberapa Rimpang Suku Zingiberaceae, K., & Ramli Sekolah Tinggi Ilmu Farmasi Makassar, N. (2019). Curcumin content in extract of some rhizomes from Zingiberaceae family. Journal of Pharmaceutical and Medicinal Sciences, 4(1).

Zeng Y, Chen Y, Zhang S, Ren H, Xia J, Liu M, Shan B, & Ren Y. (2022). Natural products in modulating methamphetamine-induced neuronal apoptosis. Front Pharmacol, 4, 12, 805991. https://doi.org/10.3389/fphar.2021.805991

Zhang, C., Fan, L., Fan, S., Wang, J., Luo, T., Tang, Y., Chen, Z., & Yu, L. (2019). Cinnamomum cassia Presl: A review of its traditional uses, phytochemistry, pharmacology and toxicology. Molecules, 24(19). https://doi.org/10.3390/molecules24193473

Zhang, R., Zhang, N., Zhang, H., Liu, C., Dong, X., Wang, X., Zhu, Y., Xu, C., Liu, L., Yang, S., Huang, S., & Chen, L. (2017). Celastrol prevents cadmium-induced neuronal cell death by blocking reactive oxygen species-mediated mammalian target of rapamycin pathway. British Journal of Pharmacology, 174(1), 82–100. https://doi.org/10.1111/bph.13655

Zhao, Q., Chen, X. Y., & Martin, C. (2016). Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. In Science Bulletin, 61(18), 1391–1398. Science in China Press. https://doi.org/10.1007/s11434-016-1136-5

Downloads

Published

14-06-2024

How to Cite

Arto, S. S., & Pangsibidang, R. C. A. (2024). Review of natural antioxidant plants to overcome the neurotoxic effects of methamphetamine. Pharmacy Education, 24(6), p. 59–72. https://doi.org/10.46542/pe.2024.246.5972