Purple sweet potato antioxidants for oxidative stress caused by intense physical exercise

Authors

  • Laurens Frestasya Military Pharmacy, Republic of Indonesia Defense University, Indonesia
  • Reynatha C.A Pangsibidang Military Pharmacy, Republic of Indonesia Defense University, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.246.128133

Keywords:

Antioxidant, Oxidative stress, Physical exercise, Purple sweet potato

Abstract

Background: Intense exercise increases ROS and reactive nitrogen species, leading to oxidative stress and potential health issues. Balancing free radical production and antioxidant defence is crucial. Endogenous antioxidants help neutralise ROS, but additional supplementation is required to prevent cell damage.

Objective: This literature review explores the potential of purple sweet potato (Ipomoea batatas L.) as an antioxidant source to counteract exercise-induced oxidative stress.

Method: Scientific articles from various platforms were collected using keywords such as "Physical exercise," "Oxidative stress," "Purple sweet potato," and "Antioxidant”.

Result: Purple sweet potato, rich in anthocyanins and vitamin C, exhibits potent free radical scavenging properties. Consumption of purple sweet potato enhances superoxide dismutase (SOD) levels, reduces lipid peroxidation (MDA), inhibits the NF-kB signalling pathway, and prevents increased heat shock protein 72 (HSP72) expression. These findings suggest that purple sweet potato consumption promotes cellular health and mitigates oxidative stress caused by intense physical exercise.

Conclusion: In conclusion, incorporating purple sweet potato into the diet shows promise in countering exercise-induced oxidative stress, promoting overall well-being, and preventing chronic diseases. Further research is needed to fully understand the mechanisms and optimal dosage for combating oxidative stress during rigorous physical training.

References

Arsic, A., Vucic, V., Glibetic, M., Popovic, T., Debeljak-Martacic, J., Cubrilo, D., Ahmetovic, Z., Peric, D., Borozan, S., Djuric, D., Barudzic, N., & Jakovljevic, V. (2016). Redox balance in elite female athletes: differences based on sport types. The Journal of Sports Medicine and Physical Fitness, 56(1–2), 1–8. https://www.minervamedica.it/en/journals/sports-med-physical-fitness/article.php?cod=R40Y2016N01A0001

Basham, S. A., Waldman, H. S., Krings, B. M., Lamberth, J., Smith, J. W., & McAllister, M. J. (2020). Effect of curcumin supplementation on exercise-induced oxidative stress, inflammation, muscle damage, and muscle soreness. Journal of Dietary Supplements, 17(4), 401–414. https://doi.org/10.1080/19390211.2019.1604604

Cao, W., Qiu, J., Cai, T., Yi, L., Benardot, D., & Zou, M. (2020). Effect of D-ribose supplementation on delayed onset muscle soreness induced by plyometric exercise in college students. Journal of the International Society of Sports Nutrition, 17(1). https://doi.org/10.1186/s12970-020-00371-8

Chang, W.-H., Hu, S.-P., Huang, Y.-F., Yeh, T.-S., & Liu, J.-F. (2010). Effect of purple sweet potato leaves consumption on exercise-induced oxidative stress and IL-6 and HSP72 levels. Journal of Applied Physiology, 109(6), 1710–1715. https://doi.org/10.1152/japplphysiol.00205.2010

Chao, P.-Y., Huang, W.-Y., Hu, S.-P., Lo, H.-F., Lin, K.-H., Huang, M.-Y., Chang, T.-R., & Yang, C.-M. (2013). Indigenous purple vegetable extracts protect against hydrogen peroxide-induced DNA damage in human lymphocytes. Food and Nutrition Sciences, 04(08), 62–70. https://doi.org/10.4236/fns.2013.48A008

Cheng, A. J., Jude, B., & Lanner, J. T. (2020). Intramuscular mechanisms of overtraining. Redox Biology, 35, 101480. https://doi.org/10.1016/j.redox.2020.101480

da Silva, L. A., Tortelli, L., Motta, J., Menguer, L., Mariano, S., Tasca, G., de Bem Silveira, G., Pinho, R. A., & Silveira, P. C. L. (2019). Effects of aquatic exercise on mental health, functional autonomy and oxidative stress in depressed elderly individuals: A randomized clinical trial. Clinics (Sao Paulo, Brazil), 74, e322. https://doi.org/10.6061/clinics/2019/e322

de Oliveira, D. C. X., Rosa, F. T., Simões-Ambrósio, L., Jordao, A. A., & Deminice, R. (2019). Antioxidant vitamin supplementation prevents oxidative stress but does not enhance performance in young football athletes. Nutrition, 63–64, 29–35. https://doi.org/10.1016/j.nut.2019.01.007

Dewangga, M. W., Dimyati, & Irianto, D. P. (2022). Antioxidant effect of purple sweet potato (Ipomoea batatas var. Antin 3) for the prevention of oxidative stress after high-intensity physical exercise in rat. Eurasian Chemical Communications, 4(9), 921–929. https://doi.org/10.22034/ecc.2022.335086.1390

Djordjevic, D. Z., Cubrilo, D. G., Puzovic, V. S., Vuletic, M. S., Zivkovic, V. I., Barudzic, N. S., Radovanovic, D. S., Djuric, D. M., & Jakovljevic, V. Lj. (2012). Changes in athlete’s redox state induced by habitual and unaccustomed exercise. Oxidative Medicine and Cellular Longevity, 2012, e805850. https://doi.org/10.1155/2012/805850

El Assar, M., Álvarez-Bustos, A., Sosa, P., Angulo, J., & Rodríguez-Mañas, L. (2022). Effect of Physical Activity/exercise on oxidative stress and inflammation in muscle and vascular aging. International Journal of Molecular Sciences, 23(15), 8713. https://doi.org/10.3390/ijms23158713

Elvana, A., Rusmarilin, H., Silaban, R., & Sinaga, R. N. (2016). Effect of purple sweet potato (Ipomoea Batatas L.) extract on Glutathione Peroxidase (GPx) activities in hepatic house mice (Mus musculus) after maximum physical exercise. Indonesian Journal of Medicine, 01(02), 116–120. https://doi.org/10.26911/theijmed.2016.01.02.05

Hadi, A., Pourmasoumi, M., Kafeshani, M., Karimian, J., Maracy, M. R., & Entezari, M. H. (2017). The effect of green tea and sour tea (Hibiscus sabdariffa L.) supplementation on oxidative stress and muscle damage in athletes. Journal of Dietary Supplements, 14(3), 346–357. https://doi.org/10.1080/19390211.2016.1237400

Herawati, E. R. N., Santosa, U., Sentana, S., & Ariani, D. (2020). Protective effects of anthocyanin extract from purple sweet potato (Ipomoea batatas L.) on blood MDA levels, liver and renal activity, and blood pressure of hyperglycemic rats. Preventive Nutrition and Food Science, 25(4), 375–379. https://doi.org/10.3746/pnf.2020.25.4.375

Im, Y. R., Kim, I., & Lee, J. (2021). Phenolic composition and antioxidant activity of purple sweet potato (Ipomoea batatas (L.) Lam.): Varietal comparisons and physical distribution. Antioxidants, 10(3), 462. https://doi.org/10.3390/antiox10030462

Ji, L. L. (2002). Exercise-induced modulation of antioxidant defense. Annals of the New York Academy of Sciences, 959(1), 82–92. https://doi.org/10.1111/j.1749-6632.2002.tb02085.x

Kurnianingsih, N., Ratnawati, R., Nazwar, T., Ali, M., & Fatchiyah, F. (2021). Purple sweet potatoes from East Java of Indonesia revealed the macronutrient, anthocyanin compound and antidepressant activity candidate. Medical Archives, 75(2), 94–100. https://doi.org/10.5455/medarh.2021.75.94-100

León-López, J., Calderón-Soto, C., Pérez-Sánchez, M., Feriche, B., Iglesias, X., Chaverri, D., & Rodríguez, F. A. (2018). Oxidative stress in elite athletes training at moderate altitude and at sea level. European Journal of Sport Science, 18(6), 832–841. https://doi.org/10.1080/17461391.2018.1453550

Li, A., Xiao, R., He, S., An, X., He, Y., Wang, C., Yin, S., Wang, B., Shi, X., & He, J. (2019). Research advances of purple sweet potato anthocyanins: Extraction, identification, stability, bioactivity, application, and biotransformation. Molecules, 24(21), 3816. https://doi.org/10.3390/molecules24213816

Montilla, E. C., Hillebrand, S., Butschbach, D., Baldermann, S., Watanabe, N., & Winterhalter, P. (2010). Preparative isolation of anthocyanins from japanese purple sweet potato (Ipomoea batatas L.) varieties by high-speed countercurrent chromatography. Journal of Agricultural and Food Chemistry, 58(18), 9899–9904. https://doi.org/10.1021/jf101898j

Ovchinnikov, A. N., Paoli, A., Seleznev, V. V., & Deryugina, A. V. (2022). Royal jelly plus coenzyme Q10 supplementation improves high-intensity interval exercise performance via changes in plasmatic and salivary biomarkers of oxidative stress and muscle damage in swimmers: A randomized, double-blind, placebo-controlled pilot trial. Journal of the International Society of Sports Nutrition, 19(1), 239–257. https://doi.org/10.1080/15502783.2022.2086015

Pastor, D., Ballester-Ferrer, J. A., Carbonell-Hernández, L., Baladzhaeva, S., & Cervello, E. (2022). Physical exercise and cognitive function. International Journal of Environmental Research and Public Health, 19(15), 9564. https://doi.org/10.3390/ijerph19159564

Pelealu, J. J., Wahyudi, L., & Tallei, T. E. (2019). Growth response and production of purple sweet potatoes after provision of arbuscular mycorrhizal fungi and organic fertilizer. Asian Journal of Plant Sciences, 18(3), 123–130. https://doi.org/10.3923/ajps.2019.123.130

Ristow, M., Zarse, K., Oberbach, A., Klöting, N., Birringer, M., Kiehntopf, M., Stumvoll, M., Kahn, C. R., & Blüher, M. (2009). Antioxidants prevent health-promoting effects of physical exercise in humans. Proceedings of the National Academy of Sciences, 106(21), 8665–8670. https://doi.org/10.1073/pnas.0903485106

Santos-Silva, A., Rebelo, M. I., Castro, E. M. B., Belo, L., Guerra, A., Rego, C., & Quintanilha, A. (2001). Leukocyte activation, erythrocyte damage, lipid profile and oxidative stress imposed by high competition physical exercise in adolescents. Clinica Chimica Acta, 306(1–2), 119–126. https://doi.org/10.1016/S0009-8981(01)00406-5

Slattery, K., Bentley, D., & Coutts, A. J. (2015). The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: Implications of antioxidant supplementation on physiological adaptation during intensified physical training. Sports Medicine, 45(4), 453–471. https://doi.org/10.1007/s40279-014-0282-7

Somani, S. M., Frank, S., & Rybak, L. P. (1995). Responses of antioxidant system to acute and trained exercise in rat heart subcellular fractions. Pharmacology Biochemistry and Behavior, 51(4), 627–634. https://doi.org/10.1016/0091-3057(94)00427-K

Teow, C. C., Truong, V.-D., McFeeters, R. F., Thompson, R. L., Pecota, K. V., & Yencho, G. C. (2007). Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chemistry, 103(3), 829–838. https://doi.org/10.1016/j.foodchem.2006.09.033

Truong, V.-D., Deighton, N., Thompson, R. T., McFeeters, R. F., Dean, L. O., Pecota, K. V., & Yencho, G. C. (2010). Characterization of anthocyanins and anthocyanidins in purple-fleshed sweetpotatoes by HPLC-DAD/ESI-MS/MS. Journal of Agricultural and Food Chemistry, 58(1), 404–410. https://doi.org/10.1021/jf902799a

Yavari, A., Javadi, M., Mirmiran, P., & Bahadoran, Z. (2015). Exercise-induced oxidative stress and dietary antioxidants. Asian Journal of Sports Medicine, 6(1), e24898. https://doi.org/10.5812/asjsm.24898

Downloads

Published

14-06-2024

How to Cite

Frestasya, L., & Pangsibidang, R. C. (2024). Purple sweet potato antioxidants for oxidative stress caused by intense physical exercise. Pharmacy Education, 24(6), p. 128–133. https://doi.org/10.46542/pe.2024.246.128133