Predicting toxicity and conducting molecular docking analysis of compounds from unripe kayu banana fruit (Musa paradisiaca L. var. Kayu) against 3mzd and 2q85 proteins in Escherichia coli for antibacterial activity

Authors

  • Arista Wahyu Ningsih Doctoral Programme of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, Indonesia & Faculty of Health Sciences, Pharmacy Study Programme, Anwar Medika University, Sidoarjo, East Java, Indonesia https://orcid.org/0000-0002-7798-0057
  • Achmad Syahrani Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, Indonesia
  • Abdi Wira Septama Research Centre of Pharmaceutical Ingredients and Traditional Medicine, BRIN, PUSPITEK Area Serpong, Tangerang Selatan, Banten, Indonesia
  • Sukardiman Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.243.329335

Keywords:

2Q85, 3MZD, Antibacterial, Kayu banana, Musa paradisiaca

Abstract

Background: Protein 3MZD and 2Q85 are proteins that play a role in the biosynthesis of bacterial cell walls because they participate in the formation stage of peptidoglycan which is an important component of the bacterial cell wall. The purpose of this study was to characterize the bioactive compounds as antibacterial agents using a docking molecule approach and conduct preliminary screening for the discovery of alternative drugs, as well as to determine the safety of those alternative drugs with toxicity predictions.

Method: The potency of bioactive compounds was analyzed using PLANT, the Online Protox II web server, and related programs used to assess the bioactivity of these compounds. The comparison drug ligand used is chloramphenicol.

Results: The binding energy (ΔG) of ligand 9 was lower than natural ligands, reference ligands, control ligands, and other ligands. Furthermore, the predicted toxicity of this compound is in the category of toxicity of class 5.

Conclusion: Unripe banana extract has been predicted to have potential as a drug against bacteria based on molecular docking studies.

References

Azzam, K. A. L. (2023). SwissADME and pkCSM Webservers Predictors: An integrated Online Platform for Accurate and Comprehensive Predictions for In Silico ADME/T Properties of Artemisinin and its Derivatives. Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex Use of Mineral Resources., 325(2), 14–21. https://doi.org/10.31643/2023/6445.13v

Babajan, B., Anuradha, C. M., Chaitanya, M., Gowsia, D., & Kumar, C. S. (2009). In silico structural characterization of Mycobacterium tuberculosis H37Rv UDP-N-acetylmuramate dehydrogenase. International Journal of Integrative Biology, 6(1), 12–16.

Chatrabhuji, P. M., Nimavat, K. S., Vyas, K. B., & Undavia, N. K. (2010). Synthesis and antimicrobial activity of some 2 -aryl-3-[(4-methyl cinnamoyl amino)-4-oxo-thiazolidines with synthesis and antimicrobial activity of some 2(4-hydroxyphenyl)-3-[(4-methyl cinnamoyl amino)-4-oxo-thiazolidines. Research Journal of Pharmaceutical, Biological, and Chemical Science, 1(3), 451–455.)

Hadi, S., & Nastiti, K. (2023). Antibacterial S. aureus docking test from compounds contained from karamunting (rhodomyrtus tomentosa (aiton) hassk.). Jurnal Matematika Dan Ilmu Pengetahuan Alam LLDikti Wilayah 1 (JUMPA), 3(1), 01–07. https://doi.org/10.54076/jumpa.v3i1.273

Hodge A, Sterner B. 2005. Toxicity classes. In: Canadian Center for Occupational Health and Safety. http://www.ccohs.ca/oshanswers/chemicals/id50.htm

Istyastono, E. P., Radifar, M., Yuniarti, N., Prasasty, V. D., & Mungkasi, S. (2020). PyPLIF HIPPOS: A molecular interaction fingerprinting tool for docking results of AutoDock Vina and PLANTS. Journal of Chemical Information and Modeling, 60(8), 3697–3702. https://doi.org/10.1021/acs.jcim.0c00305v

Kemenkes RI. (2022). Indonesia Health Profile 2021. In Pusdatin.Kemenkes.Go.Id.

Kesuma, D., Siswandono, S., Purwanto, B. T., & Hardjono, S. (2018). In silico test of cytotoxic activity and toxicity of N-(Benzoyl)-N'-phenylthiourea derivative compounds as anticancer drug candidates. Journal of Pharmaceutical Science and Clinical Research, 3(1), 1. https://doi.org/10.20961/jpscr.v3i1.16266

Khalil, M. (2023). Molecular docking simulation of coumestrol compound with hepatitis B virus capsid protein: in silico study of the potential of natural compounds. Jurnal Jeumpa, 10(1), 138–148. https://doi.org/10.33059/jj.v10i1.7606

Laeeq, S., & Dubey, V. (2022). Computational prediction of ADMET properties of ACAT inhibitors for synthesis and pharmacological screening. International Journal of Health Sciences, 6(S7), 2377–2388. https://doi.org/10.53730/ijhs.v6ns7.11866

Majumdar, D., Philip, J. E., Das, S., Kundu, B. K., Saini, R. V., Chandan, G., Bankura, K., & Mishra, D. (2021). Experimental and theoretical corroboration of antimicrobial and anticancer activities of two pseudohalides induced structurally diverse Cd (II)-Salen complexes. Journal of Molecular Structure, 1225, 129189. https://doi.org/10.1016/j.molstruc.2020.129189

Mapesa, W. A., Waweru, M. P., Bukachi, F., & Wafula, K. D. (2021). Aqueous tuber extracts of Tylosema fassoglense (Kotschy ex Schweinf.) Torre and Hillc. (Fabaceae) possess significant in-vivo antidiarrheal activity and ex-vivo spasmolytic effect possibly mediated by modulation of nitrous oxide system, voltage-gated calcium channels, and muscarinic receptors. Frontiers in Pharmacology, 12, 636879. https://doi.org/10.3389/fphar.2021.636879

Maryati, T., Nugroho, T., Bachruddin, Z., & Pertiwiningrum, A. (2021). Antibacterial effects of Kepok Banana bunch (Musa paradisiaca L.) against Staphylococcus aureus. IOP Conference Series: Earth and Environmental Science, 637(1). https://doi.org/10.1088/1755-1315/637/1/012046

Miyagawa, M. (2010). Globally harmonized system of classification and labeling of chemicals (GHS) and its implementation in Japan. In Nippon eiseigaku zasshi. Japanese journal of hygiene, 65(1). https://doi.org/10.1265/jjh.65.5

Ningsih, A. W., Rochmanti, M., & Basori, A. (2021). Effectiveness of antidiarrheal unripe wooden banana (Musa paradisiaca L.) in male Balb-C/mice induced with Escherichia coli. Folia Medica Indonesiana, 56(3), 208. https://doi.org/10.20473/fmi.v56i3.24558

Pormohammad, A., Nasiri, M. J., & Azimi, T. (2019). Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: A systematic review and meta-analysis. Infection and Drug Resistance, 12, 1181–1197. https://doi.org/10.2147/IDR.S201324

Prasojo, S. L., Hartanto, F. A. D., Yuniarti, N., Ikawati, Z., & Istyastono, E. P. (2010). Docking of 1-Phenylsulfonamide-3-Trifluoromethyl-5-Parabromophenyl-Pyrazole to Cyclooxygenase-2 using plants. Indonesian Journal of Chemistry, 10(3), 348–351. https://doi.org/10.22146/ijc.21441

Purwanggana, A., Mumpuni, E., & Mulatsari, E. (2018). In vitro and silico antibacterial activity Of 1 . 5-BIS ( 3 ’-ethoxy-4 ’-hydroxyphenyl ) -1-4-Pentadiene-3-One. International Hournal of Pharmacy and Pharmaceutical Science. 10(5), 3–9. https://doi.org/10.22159/ijpps.2018v10i5.25143

Sultana, S., Hossain, M. A., Islam, M. M., & Kawsar, S. M. A. (2024). Antifungal potential of mannopyranoside derivatives through computational and molecular docking studies against Candida albicans 1IYL and 1AI9 proteins. Current Chemistry Letters, 13(1), 1–14. https://doi.org/10.5267/j.ccl.2023.9.004

Tegar, M., & Purnomo, H. (2013). Tea leaves extracted as anti-malaria based on molecular docking PLANTS. Procedia Environmental Sciences, 17, 188–194. https://doi.org/10.1016/j.proenv.2013.02.028

Wardaniati, I., & Azhari Herli, M. (2018). Studi molecular docking senyawa golongan flavonol sebagai antibakteri. JOPS (Journal Of Pharmacy and Science), 1(2), 20–27. https://doi.org/10.36341/jops.v1i2.489

Yuliet, Khumaidi, A., Hikma, N., & Nurinayah. (2022). Antibacterial activity and bioautographic evaluation of extract and fraction from tamoenju (Hibiscus Surattensis L.) leaves. International Journal of Applied Pharmaceutics, 14(Special issue 5), 56–59. https://doi.org/10.22159/ijap.2022.v14s5.07

Zarenezhad, E., Sadeghian, S., Shekoohi, K., Emami, L., Ghasemian, A. M., & Zarenezhad, A. (2022). Synthesis, biological evaluation and in silico studies of oxime ether derivatives containing a quinoxaline moiety. Russian Journal of Bioorganic Chemistry, 49(1), 101–113. https://doi.org/10.1134/S1068162023010326

Downloads

Published

26-05-2024

How to Cite

Ningsih, A. W., Syahrani, A., Septama, A. W., & Sukardiman. (2024). Predicting toxicity and conducting molecular docking analysis of compounds from unripe kayu banana fruit (Musa paradisiaca L. var. Kayu) against 3mzd and 2q85 proteins in Escherichia coli for antibacterial activity . Pharmacy Education, 24(3), p. 329–335. https://doi.org/10.46542/pe.2024.243.329335