The QSAR study of pyridothienopyrimidine derivatives as antimicrobial activities against pseudomonas aeruginosa

Authors

  • Galih Satrio Putra Department of Chemistry, State University of Malang, Malang, Indonesia
  • Anisa Oktaviana Putri Department of Chemistry, State University of Malang, Malang, Indonesia
  • Sarah Nur Fitria Gunawan Faculty of Medicine, State University of Malang, Malang, Indonesia
  • Farida Anwari Medical Laboratory Science, University of Anwar Medika, Sidoarjo, Indonesia https://orcid.org/0000-0002-3796-0932
  • Melanny Ika Sulistyowaty Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0002-9510-6822

DOI:

https://doi.org/10.46542/pe.2024.243.363369

Keywords:

Antimicrobial, In silico, Pseudomonas aeruginosa, QSAR

Abstract

Background: Antimicrobial resistance (AMR) cases have been widespread in the last decade. To overcome this, new drugs need to be discovered and developed.

Objective: This research aims to develop antimicrobial candidates; some research has found that some compounds with pyridothienopyrimidine derivatives can inhibit the growth of pseudomonas aeruginosa.

Methods: The in silico approach method, along with the quantitative structure-activity relationship (QSAR) technique, plays an important role in discovering and developing new drugs. This study focused on developing pyridothienopyrimidine derivatives that are much more potent by making the best QSAR equation of 12 pyridothienopyrimidine derivatives tested in vitro for their antimicrobial activity against pseudomonas aeruginosa.  

 Results:  The best QSAR equation was obtained from pyridothienopyrimidine derivatives as antimicrobial activity pseudomonas aeruginosa, with pMIC=-0.102 (±1.418) Log S-1.017 (±0.370) ELUMO -0.017 (±0.012) MR-3.544 (±1.418) (n=12; Sig = 0.001; R = 0.943; R2 = 0.890; F= 21.558; Q2=0.62).

Conclusions: Increasing the antimicrobial activity of pyridothienopyrimidine derivatives against pseudomonas aeruginosa can be achieved by decreasing Log S, ELUMO, and molar refractivity. The best QSAR equation can be a tool to obtain a more potential new chemical structure model and reduce trials and errors.

References

Adeniji, S. E., Uba, S., Uzairu, A. (2018). QSAR modeling and molecular docking analysis of some active compounds against Mycobacterium tuberculosis receptor (Mtb CYP121). Journal of Pathogens, 2018, 1‒24. https://doi.org/10.1155/2018/1018694

Chirico, N., & Gramatica, P. (2011). Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation Coefficient. Journal of Chemical information and Modeling, 51(9), 2320–2335. http://doi.org/10.1021/ci200211n

Daikos, G. L., da Cunha, C. A., Rossolini, G. M., Stone, G G., Baillon-Plot, N., Tawadrous, M., Irani, P.(2021) Review of ceftazidime-avibactam for the treatment of infections caused by Pseudomonas aeruginosa. Antibiotics, 10 (1126), 1‒24. https://doi.org/10.3390/antibiotics10091126

Ge Zayda, M., Abdel-Rahman, A. A. H., El-Essawy, F. A. (2020). Synthesis and antibacterial activities of different five-membered heterocyclic rings incorporated with pyridothienopyrimidine. ACS Omega, 5(11), 6163−6168 https://dx.doi.org/10.1021/acsomega.0c00188

Gramatica, P. (2007). Principles of QSAR models validation: internal and external. QSAR & Combinatorial Science, 2(5), 694–701. https://doi.org/10.1002/qsar.200610151

Hansch, C., & Fujita, T. (1964). ρ-σ-π analysis: A method for the correlation of biological activity and chemical structure. Correlation of Biological Activity and Chemical Structure, 86, 1616‒1626.

Hardjono, S., Siswodihardjo, S., Pramono, P., Darmanto, W. (2016). Quantitave structure-cytotoxic activity relationship 1-(Benzoyloxy)urea and its derivative. Current Drug Discovery Technologies, 13, 101‒108. https://doi.org/10.2174/1570163813666160525112327

Kesuma, D., Putra, G.S., Yahmin, Y., Sumari, S., Putri, A.O., Anwari, F., Salmasfatah, N., Sulistyowaty, M. I. (2024). Hansch analysis by QSAR model of curcumin and eight of its transformed derivatives with antimicrobial activity against Staphylococcus aureus. Journal of Pharmacy & Pharmacognosy Research, 12(5), 1008‒1020. https://doi.org/10.56499/jppres24.1945_12.5.1008

Kubinyi (1993). QSAR - Hansch analysis and related approaches. Methods and principles in medicinal chemistry. Vol. I. VCH Verlagsgesellschaf.

Luo, X., Shu, M., Wang, Y., Liu, J., Yang, W., Lin, Z. (2012). 3D-QSAR studies of dihydropyrazole and dihydropyrrole derivatives as inhibitors of human mitotic kinesin Eg5 based on molecular docking. Molecules, 17(2). 2015‒2029. https://doi.org/10.3390/molecules17022015

Putra, G.S., Sulistyowaty, M. I., Yuniarta, T. A., Yahmin, Y., Sumari, S., Saechan, C., Yamauchi, T. (2023). QSAR study of benzylidene hydrazine benzamides derivatives with in vitro anticancer activity against human lung cancer cell line A459. Journal of Pharmacy & Pharmacognosy Research, 11(6), 1123‒1136. https://doi.org/10.56499/jppres23.1718_11.6.1123

Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., Wu, M. (2022). Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy, 7 (199), 1‒27. https://doi.org/10.1038/s41392-022-01056-1

Sumartha, I. G. A., Yuniarta, T. A., Kesuma, D. (2022) QSAR study of pyrazole-urea hybrid compounds as antimalarial agent via prolyl-tRNA synthetase inhibition. Rasayan Journal of Chemistry, 15(2), 1450–1460. http://doi.org/10.31788/RJC.2022.1526811

Thi, M. T. T., Wibowo, D., Rehm, B. H. A.(2020). Pseudomonas aeruginosa biofilms. International Journal of Molecular Sciences, 21(8671), 1‒25. https://doi.org/10.3390/ijms21228671

Tuon, F. F., Dantas, L. R., Suss, P. H., Ribeiro, V. S. T. (2022). Pathogenesis of the Pseudomonas aeruginosa Biofilm: A review. Pathogens, 11(300), 2‒19. https://doi.org/10.3390/pathogens11030300

Wahyudi, D., Aman, A. T., Handayani, N. S. N., Soetarto, E. S. (2019). Differences among clinical isolates of Pseudomonas aeruginosa in their capability of forming biofilms and their susceptibility to antibiotics. Biodiversitas, 20(5), 1450‒1456. https://doi.org/10.13057/biodiv/d200538

Wahyunita., Sjahril, R., Hamid, F. (2021). Antibiotic Susceptibility Pattern in Clinical Isolates of Pseudomonas aeruginosa. Nusantara Medical Science Journal, 6(2), 66-73. https://doi.org/10.20956/nmsj.v6i2.14172

Downloads

Published

18-06-2024

How to Cite

Putra, G. S., Putri, A. O., Gunawan, S. N. F., Anwari, F., & Sulistyowaty, M. I. (2024). The QSAR study of pyridothienopyrimidine derivatives as antimicrobial activities against pseudomonas aeruginosa. Pharmacy Education, 24(3), p. 363–369. https://doi.org/10.46542/pe.2024.243.363369