Immunotherapies for food allergy: Exploring new targets and innovative strategies for enhanced efficacy

Authors

  • Jamal Nasser Saleh Al-Maamari Doctoral Programme of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0002-0655-9441
  • Ahmed Al-Qubati Master Programme of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0001-9949-4095
  • Junaidi Khotib Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia https://orcid.org/0000-0002-8468-8441
  • Mahardian Rahmadi Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia

DOI:

https://doi.org/10.46542/pe.2024.243.266272

Keywords:

Clinical endpoint, Food allergy, Immunotherapy, Personalised treatment

Abstract

Food allergy is a growing public health concern. It affects children and adults, resulting in significant declines in the overall quality of life. In most cases, individuals must avoid consuming allergenic foods, which can be challenging, especially for patients who experience life-threatening symptoms even with minimal exposure to allergens. This review aimed to identify promising targets for immunotherapy in food allergy, strategies to reduce adverse reactions and side effects, optimal dosing approaches, clinical endpoints to measure efficacy, patient subgroups that benefit, and barriers to implementing immunotherapy. An in-depth literature review was conducted using PubMed and Google Scholar to look into novel approaches and possible targets for enhancing the effectiveness of immunotherapy. Targeting specific immune cells and molecules (e.g., IgE and Tregs), lowering the doses of allergens, extending intervals between doses, personalising dosing, selecting eligible patients carefully, and validating clinical endpoints have shown promising results in overcoming food allergy challenges and increasing immunotherapy efficacy. Potential innovative strategies to enhance immunotherapy efficacy encompass developing more cost-effective approaches, increasing access to trained specialists, developing standardised protocols, and collecting long-term data.

References

Aarestrup, F. M., Taketomi, E. A., Galvão, C. E. S., Gagete, E., Arruda, A. C. N. M., Alves, G. B., Lira, G. V. de A. G., Gonçalves, M. R., Miziara, M. G. C., & Casado, S. S. M. (2022). Good clinical practice recommendations in allergen immunotherapy: Position paper of the Brazilian Association of Allergy and Immunology–ASBAI. World Allergy Organization Journal, 15(10), 100697. https://doi.org/10.1016/j.waojou.2022.100697

Alvaro‐Lozano, M., Akdis, C. A., Akdis, M., Alviani, C., Angier, E., Arasi, S., Arzt‐Gradwohl, L., Barber, D., Bazire, R., & Cavkaytar, O. (2020). Allergen immunotherapy in children user’s guide. Pediatric Allergy and Immunology, 31, 1–101. https://doi.org/10.1111/pai.13189

Anagnostou, A. (2021). Weighing the benefits and risks of oral immunotherapy in clinical practice. Allergy and Asthma Proceedings, 42(2), 118. https://doi.org/10.2500/aap.2021.42.200107

Anderson, B., Wong, L., Adlou, B., Long, A., & Chinthrajah, R. S. (2021). Oral immunotherapy in children: Clinical considerations and practical management. Journal of Asthma and Allergy, 1497–1510. https://doi.org/10.2147/JAA.S282696

Arasi, S., Corsello, G., Villani, A., & Pajno, G. B. (2018). The future outlook on allergen immunotherapy in children: 2018 and beyond. Italian Journal of Pediatrics, 44(1), 1–9. https://doi.org/10.1186/s13052-018-0519-4

Bellinghausen, I., Khatri, R., & Saloga, J. (2022). Current strategies to modulate regulatory T cell activity in allergic inflammation. Frontiers in Immunology, 13. https://doi.org/10.3389/fimmu.2022.912529

Boden, S. R., & Wesley Burks, A. (2011). Anaphylaxis: A history with emphasis on food allergy. Immunological Reviews, 242(1), 247–257. https://doi.org/10.1111/j.1600-065X.2011.01028.x

Breiteneder, H., Peng, Y., Agache, I., Diamant, Z., Eiwegger, T., Fokkens, W. J., Traidl‐Hoffmann, C., Nadeau, K., O’Hehir, R. E., & O’Mahony, L. (2020). Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy, 75(12), 3039–3068. https://doi.org/10.1111/all.14582

Canonica, G. W., Bachert, C., Hellings, P., Ryan, D., Valovirta, E., Wickman, M., De Beaumont, O., & Bousquet, J. (2015). Defining the highest-risk clinical subgroups upon community infection with SARS-CoV-2 when considering the use of neutralising monoclonal antibodies (nMABs) and antiviral drugs: independent advisory group report. World Allergy Organization Journal, 8(1), 1–10. https://doi.org/10.1186/s40413-015-0079-7

Chang, C., & Sun, Y. (2022). Global Strategy for asthma management and prevention: Interpretation of the Updates in 2022. Chinese General Practice, 25(35), 4355. https://doi.org/10.12114/j.issn.1007-9572.2022.0554

El Mecherfi, K.-E., Todorov, S. D., Cavalcanti de Albuquerque, M. A., Denery-Papini, S., Lupi, R., Haertlé, T., Dora Gombossy de Melo Franco, B., & Larré, C. (2020). Allergenicity of fermented foods: emphasis on seeds protein-based products. Foods, 9(6), 792. https://doi.org/10.3390/foods9060792

Feuille, E., & Nowak-Wegrzyn, A. (2018). Allergen-specific immunotherapies for food allergy. Allergy, Asthma & Immunology Research, 10(3), 189–206. https://doi.org/10.4168/aair.2018.10.3.189

Galli, S. J., & Tsai, M. (2012). IgE and mast cells in allergic disease. Nature Medicine, 18(5), 693–704. https://doi.org/10.1038/nm.2755

Hadley, C. (2006). Food allergies on the rise? Determining the prevalence of food allergies, and how quickly it is increasing, is the first step in tackling the problem. EMBO Reports, 7(11), 1080–1083. https://doi.org/10.1038/sj.embor.7400846

Hwang, D. W., Nagler, C. R., & Ciaccio, C. E. (2022). New and emerging concepts and therapies for the treatment of food allergy. Immunotherapy Advances, 2(1), ltac006. https://doi.org/10.1093/immadv/ltac006

Iweala, O. I., Choudhary, S. K., & Commins, S. P. (2018). Food allergy. Current Gastroenterology Reports, 20(5), 1–6. https://doi.org/10.1007/s11894-018-0624-y

Kowalski, M. L., Ansotegui, I., Aberer, W., Al-Ahmad, M., Akdis, M., Ballmer-Weber, B. K., Beyer, K., Blanca, M., Brown, S., & Bunnag, C. (2016). Risk and safety requirements for diagnostic and therapeutic procedures in allergology: World Allergy Organization Statement. World Allergy Organization Journal, 9, 1–42. https://doi.org/10.1186/s40413-016-0122-3

Liu, G., Liu, M., Wang, J., Mou, Y., & Che, H. (2021). The role of regulatory T cells in epicutaneous immunotherapy for food allergy. Frontiers in Immunology, 12, 660974. https://doi.org/10.3389/fimmu.2021.660974

Lloyd, M., Galvin, A. D., & Tang, M. L. K. (2022). Measuring the impact of food immunotherapy on health-related quality of life in clinical trials. Frontiers in Allergy, 3. https://doi.org/10.3389/falgy.2022.941020

Lopez, C. M., Yarrarapu, S. N. S., & Mendez, M. D. (2023). Food allergies. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK482187/

Magnan, A., Nicolas, J.-F., Caimmi, D., Vocanson, M., Haddad, T., Colas, L., Scurati, S., Mascarell, L., & Shamji, M. H. (2023). Deciphering differential behavior of immune responses as the foundation for precision dosing in allergen immunotherapy. Journal of Personalized Medicine, 13(2), 324. https://doi.org/10.3390/jpm13020324

Moote, W., Kim, H., & Ellis, A. K. (2018). Allergen-specific immunotherapy. Allergy, Asthma, and Clinical Immunology: Official Journal of the Canadian Society of Allergy and Clinical Immunology, 14(Suppl 2), 53. https://doi.org/10.1186/s13223-018-0282-5

Muraro, A., de Silva, D., Halken, S., Worm, M., Khaleva, E., Arasi, S., Dunn-Galvin, A., Nwaru, B. I., De Jong, N. W., & Del Río, P. R. (2022a). Managing food allergy: GA2LEN guideline 2022. World Allergy Organization Journal, 15(9), 100687. https://doi.org/10.1016/j.waojou.2022.100687

Muraro, A., Tropeano, A., & Giovannini, M. (2022b). Allergen immunotherapy for food allergy: Evidence and outlook. Allergologie Select, 6, 285. https://doi.org/10.5414/ALX02319E

Palomares, O., Elewaut, D., Irving, P. M., Jaumont, X., & Tassinari, P. (2022). Regulatory T cells and immunoglobulin E: A new therapeutic link for autoimmunity? Allergy, 77(11), 3293–3308. https://doi.org/10.1111/all.15449

Pechsrichuang, P., & Jacquet, A. (2020). Molecular approaches to allergen‐specific immunotherapy: Are we so far from clinical implementation? Clinical & Experimental Allergy, 50(5), 543–557. https://doi.org/10.1111/cea.13588

Pitsios, C., Petalas, K., Dimitriou, A., Parperis, K., Gerasimidou, K., & Chliva, C. (2022). Workup and clinical assessment for allergen immunotherapy candidates. Cells, 11(4), 653. https://doi.org/10.3390/cells11040653

Schoos, A.-M. M., Bullens, D., Chawes, B. L., Costa, J., De Vlieger, L., DunnGalvin, A., Epstein, M. M., Garssen, J., Hilger, C., & Knipping, K. (2020). Immunological outcomes of allergen-specific immunotherapy in food allergy. Frontiers in Immunology, 11, 568598. https://doi.org/10.3389/fimmu.2020.568598

Scurlock, A. M., & Jones, S. M. (2010). An update on immunotherapy for food allergy. Current Opinion in Allergy and Clinical Immunology, 10(6), 587.

Sim, K., Mijakoski, D., Stoleski, S., Del Rio, P. R., Sammut, P., Le, T.-M., Munblit, D., & Boyle, R. J. (2020). Outcomes for clinical trials of food allergy treatments. Annals of Allergy, Asthma & Immunology, 125(5), 535–542. https://doi.org/10.1097/ACI.0b013e32833fd5eb

Song, T. W. (2016). A practical view of immunotherapy for food allergy. Korean Journal of Pediatrics, 59(2), 47. https://doi.org/10.3345/kjp.2016.59.2.47

Tontini, C., & Bulfone-Paus, S. (2021). Novel approaches in the inhibition of IgE-induced mast cell reactivity in food allergy. Frontiers in Immunology, 12, 613461. https://doi.org/10.3389/fimmu.2021.613461

Turner, P. J., Baumert, J. L., Beyer, K., Boyle, R. J., Chan, C., Clark, A. T., Crevel, R. W. R., DunnGalvin, A., Fernández‐Rivas, M., & Gowland, M. H. (2016). Can we identify patients at risk of life‐threatening allergic reactions to food? Allergy, 71(9), 1241–1255. https://doi.org/10.1111/all.12924

Warren, C. M., Jiang, J., & Gupta, R. S. (2020). Epidemiology and burden of food allergy. Current Allergy and Asthma Reports, 20, 1-9. https://doi.org/10.1007/s11882-020-0898-7

Westwell‐Roper, C., To, S., Andjelic, G., Lu, C., Lin, B., Soller, L., Chan, E. S., & Stewart, S. E. (2022). Food‐allergy‐specific anxiety and distress in parents of children with food allergy: A systematic review. Pediatric Allergy and Immunology, 33(1), e13695. https://doi.org/10.1111/pai.13695

Yu, W., Freeland, D. M. H., & Nadeau, K. C. (2016). Food allergy: Immune mechanisms, diagnosis and immunotherapy. Nature Reviews Immunology, 16(12), 751–765. https://doi.org/10.1038/nri.2016.111

Zhernov, Y., Curin, M., Khaitov, M., Karaulov, A., & Valenta, R. (2019). Recombinant allergens for immunotherapy: State of the art. Current Opinion in Allergy and Clinical Immunology, 19(4), 402. https://doi.org/10.1097/ACI.0000000000000536

Downloads

Published

05-05-2024

How to Cite

Al-Maamari, J. N. S., Al-Qubati, A., Khotib, J., & Rahmadi, M. (2024). Immunotherapies for food allergy: Exploring new targets and innovative strategies for enhanced efficacy. Pharmacy Education, 24(3), p. 266–272. https://doi.org/10.46542/pe.2024.243.266272