Antibacterial properties of Pyrrosia longifolia extracts

Authors

DOI:

https://doi.org/10.46542/pe.2023.232.168173

Keywords:

Antibacterial, Fern, Minimum bactericidal concentration, Minimum inhibitory concentration

Abstract

Background: Pyrrosia longifolia is an epiphytic plant found in tropical forests. This plant is known to have antioxidant, anti-diabetic, anti-inflammatory, and antibacterial properties and is widely used in traditional medicine. Pyrrosia longifolia is one of the species used in traditional medicine, but no evidence of antibacterial activity has been found.

Objective: The purpose of this study is to determine the antibacterial activity of various P. longifolia extracts.

Methods: The plant was macerated with methanol and separated based on its polarity. The well diffusion method was used to determine the plant’s antibacterial activity through the inhibition zones - minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of bacterial growth against seven bacteria pathogens. 

Results: The antibacterial activity of the  extracts showed various inhibitions of the bacteria tested. Dichloromethane and ethyl acetate extracts showed intermediate inhibitory activity on Bacillus subtilis ATCC 19659, B. cereus ATCC 10876, Salmonella typhimurium ATCC 142028, and Vibrio parahaemolyticus ATCC 17802.

Conclusion: The extract of P. longifolia is susceptible to the test bacteria, and additional testing is necessary to determine its antibacterial activity.

Author Biographies

Rohimatul Khodijah, Universitas Riau, Riau, Indonesia

Department of Chemistry, Faculty of Mathematics and Natural Sciences

Yuli Haryani , Universitas Riau, Riau, Indonesia

Department of Chemistry, Faculty of Mathematics and Natural Sciences

Hilwan Yuda Teruna, Universitas Riau, Pekanbaru, Riau, Indonesia

Department of Chemistry, Faculty of Mathematics and Natural Sciences

Rudi Hendra, Universitas Riau, Pekanbaru, Riau, Indonesia

Department of Chemistry, Faculty of Mathematics and Natural Sciences

 

References

Afham, M., Teruna, H. Y., & Hendra, R. (2022). The potential of Mimosa pudica L as an α-glucosidase inhibitor and antioxidant agent. Pharmacy Education, 22(2), 1-4. https://doi.org/10.46542/pe.2022.222.14

Ahmadi, S., Ahmadi, G., & Ahmadi, H. (2022). A review on antifungal and antibacterial activities of some medicinal plants. Micro Nano Bio Aspects, 1(1), 10-17

Akhmadjon, S., Hong, S. H., Lee, E.-H., Park, H.-J., & Cho, Y.-J. (2020). Biological activities of extracts from Tongue fern (Pyrrosia lingua). Journal of Applied Biological Chemistry, 63(3), 181-188. https://doi.org/10.3839/jabc.2020.025

Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6(4), 42. https://doi.org/10.3390/plants6040042

Brownsey, P., Shepherd, L., de Lange, P., & Perrie, L. (2021). Pyrrosia serpens (G. Forst.) Ching a new record for the fern flora of the Kermadec Islands. New Zealand Journal of Botany, 59(2), 229-243. https://doi.org/10.1080/0028825X.2020.1796716

Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology, 94(3), 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

Chen, Y.-J., Xie, G.-Y., Xu, G.-K., Dai, Y.-Q., Shi, L., & Qin, M.-J. (2015). Chemical constituents of Pyrrosia calvata. Natural product communications, 10(7), 1934578X1501000714. https://doi.org/10.1177/1934578X1501000714

Cheng, D., Zhang, Y., Gao, D., & Zhang, H. (2014). Antibacterial and anti-inflammatory activities of extract and fractions from Pyrrosia petiolosa (Christ et Bar.) Ching. Journal of Ethnopharmacology, 155(2), 1300-1305. https://doi.org/10.1016/j.jep.2014.07.029

Committee, C. N. P. (2000). Pharmacopoeia Chinensis China: Chemistry Engineering Publishers, Beijing

Desai, S., Sanghrajka, K., & Gajjar, D. (2019). High adhesion and increased cell death contribute to strong biofilm formation in Klebsiella pneumoniae. Pathogens, 8(4), 277. https://doi.org/10.3390/pathogens8040277

Esfahanian, E., Adhikari, U., Dolan, K., & Mitchell, J. (2019). Construction of a new dose-response model for Staphylococcus aureus considering growth and decay kinetics on skin. Pathogens, 8(4), 253. https://doi.org/10.3390/pathogens8040253

Farhadi, F., Khameneh, B., Iranshahi, M., & Iranshahy, M. (2019). Antibacterial activity of flavonoids and their structure-activity relationship: An updated review. Phytotherapy Research, 33(1), 13-40. https://doi.org/10.1002/ptr.6208

Geoghegan, F., Wong, R., & Rabie, A. (2010). Inhibitory effect of Quercetin on periodontal pathogens in vitro. Phytotherapy Research, 24(6), 817-820. https://doi.org/10.1002/ptr.3014

He, K., Fan, L.-L., Wu, T.-T., & Du, J. (2019). A new xanthone glycoside from Pyrrosia sheareri. Natural Product Research, 33(20), 2982-2987. https://doi.org/10.1080/14786419.2018.1514398

He, M., Wu, T., Pan, S., & Xu, X. (2014). Antimicrobial mechanism of flavonoids against Escherichia coli ATCC 25922 by model membrane study. Applied Surface Science, 305, 515-521. https://doi.org/10.1016/j.apsusc.2014.03.125

Hendra, R., Gurning, S. N., Panjaitan, U. P. A., & Teruna, H. Y. (2020). Antioxidant activity of an Epiphyte Fern in Palm Oil Tree. Paper presented at the Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1655/1/012031

Hendra, R., Khodijah, R., Almurdani, M., Haryani, Y., Nugraha, A. S., Frimayanti, N., Abdulah, R. (2022). Free Radical Scavenging, Anti-Infectious, and Toxicity Activities from Stenochlaena palustris (Burm. f.) Bedd. Extracts. Advances in Pharmacological and Pharmaceutical Sciences, 2022, 1-8. doi: https://doi.org/10.1155/2022/5729217

Hovenkamp, P. H. (2003). Pyrrosia Mirbel. In W. P. De Winter & V. B. Amaroso (Eds.), Plant resources of South-East Asia No 15(2): Ferns and Fern Allies (pp. 170-174). Leiden: Backhuys

Karimi, E., Oskoueian, E., Hendra, R., & Jaafar, H. (2010). Solid state fermentation effects on pistachio hull antioxidant activities. Asia-Pacific Journal of Science and Technology, 15(5), 360-366. https://doi.org/10.3390/molecules15096244

Khodijah, R., Teruna, H. Y., & Hendra, R. (2022). Antioxidant and α-Glucosidase inhibition of Pyrrosia longifolia extracts. Pharmacy Education, 22(2), 16-19. https://doi.org/10.46542/pe.2022.222.1619

Lang, T.-Q., Zhang, Y., Chen, F., Luo, G.-Y., & Yang, W.-D. (2021). Characterization of chemical components with diuretic potential from Pyrrosia petiolosa. Journal of Asian Natural Products Research, 23(8), 764-771. https://doi.org/10.1080/10286020.2020.1786065

Loo, Y. Y., Rukayadi, Y., Nor-Khaizura, M.-A.-R., Kuan, C. H., Chieng, B. W., Nishibuchi, M., & Radu, S. (2018). In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens. Frontiers in microbiology, 9, 1555. https://doi.org/10.3389/fmicb.2018.01555

Porras, G., Chassagne, F., Lyles, J. T., Marquez, L., Dettweiler, M., Salam, A. M., & Quave, C. L. (2020). Ethnobotany and the role of natural plant products in antibiotic drug discovery. Chemical Reviews, 121(6), 3495-3560. https://doi.org/10.1021/acs.chemrev.0c00922

Tong, W., Zaadah, J. N., Tan, W., Melati, K., Latiffah, Z., & Darah, I. (2014). Antimicrobial activity of Phomopsis sp. ED2 was residing in the medicinal plant Orthosiphon stamineus Benth. Annual Research & Review in Biology, 1490-1501. https://doi.org/10.9734/ARRB/2014/8060

World flora online. Available at http://www.worldfloraonline.org/. Accessed on 22nd February 2023

Y enn, T. W., Ring, L. C., Zahan, K. A., Rahman, M. S. A., Tan, W.-N., & Alaudin, B. J. S. (2018). Chemical composition and antimicrobial efficacy of Helminthostachys zeylanica against foodborne Bacillus cereus. Natural Product Sciences, 24(1), 66-70. https://doi.org/10.20307/nps.2018.24.1.66

Downloads

Published

15-05-2023

How to Cite

Khodijah, R., Haryani , Y., Teruna, H. Y., & Hendra, R. (2023). Antibacterial properties of Pyrrosia longifolia extracts. Pharmacy Education, 23(2), p. 168–173. https://doi.org/10.46542/pe.2023.232.168173

Issue

Section

Special Edition