Antioxidant and toxicological activities of Pyrossia lanceolata (L.) Farw. extracts
DOI:
https://doi.org/10.46542/pe.2023.232.174178Keywords:
Antioxidant, Pyrrosia lanceolata (L.) Farw, ToxicityAbstract
Background: Pyrrosia lanceolata (L.) farw. is one of the Polypodiaceae species that is commonly used as a traditional medicinal plant.
Objective: The purpose of this study was to determine the antioxidant and toxic levels in the extracts of the species.
Method: The aerial portion of the specie was extracted with methanol, followed by a liquid-liquid extraction with n-hexane, dichloromethane, and ethyl acetate. DPPH radicals and the brine shrimp lethality test, , were used to assess its antioxidant activity and toxicity.
Result: The n-hexane extract exhibited no activity with IC50 values exceeding 500 μg/mL, whereas the ethyl acetate extract exhibited a high level of antioxidant activity with an IC50 value of 12.08±0.27 μg/mL. Moreover, when tested against Artemia salina leach, the toxicological level of the extracts was greater than 1000 μg/mL.
Conclusion: These findings lay the groundwork for further investigation into the process of isolating and evaluating the biological activity of secondary metabolites that were discovered in the extract.
References
Afham, M., Teruna, H. Y., & Hendra, R. (2022). IAI SPECIAL EDITION: The potential of Mimosa pudica L as an α-glucosidase inhibitor and antioxidant agent. Pharmacy Education, 22(2), 1-4. https://doi.org/10.46542/pe.2022.222.14
Akhmadjon, S., Hong, S. H., Lee, E.-H., Park, H.-J., & Cho, Y.-J. (2020). Biological activities of extracts from Tongue fern (Pyrrosia lingua). Journal of Applied Biological Chemistry, 63(3), 181-188. https://doi.org/10.3839/jabc.2020.025
Dias, M. C., Pinto, D. C., & Silva, A. M. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26 (17), 5377. https://doi.org/10.3390/molecules26175377
Ding, Z. T., Fang, Y. S., Tai, Z. G., Yang, M. H., Xu, Y. Q., Li, F., & Cao, Q. E. (2008). Phenolic content and radical scavenging capacity of 31 species of ferns. Fitoterapia, 79(7-8), 581-583. https://doi.org/10.1016/j.fitote.2008.01.011
Gan, R.-Y., Kuang, L., Xu, X.-R., Zhang, Y., Xia, E.-Q., Song, F.-L., & Li, H.-B. (2010). Screening of natural antioxidants from traditional Chinese medicinal plants associated with the treatment of rheumatic disease. Molecules, 15(9), 5988-5997. https://doi.org/10.3390/molecules15095988
He, K., Fan, L.-L., Wu, T.-T., & Du, J. (2019). A new xanthone glycoside from Pyrrosia sheareri. Natural Product Research, 33(20), 2982-2987. https://doi.org/10.1080/14786419.2018.1514398
Hendra, R., Gurning, S. N., Panjaitan, U. P. A., & Teruna, H. Y. (2020). Antioxidant activity of an Epiphyte Fern in Palm Oil Tree. Paper presented at the Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1655/1/012031
Hendra, R., Khodijah, R., Putri, R., Amalia, R., Haryani, Y., Teruna, H. Y., & Abdulah, R. (2021). Cytotoxicity and Antiplasmodial Properties of Different Hylocereus polyrhizus Peel Extracts. Medical Science Monitor Basic Research, 27, e931118-931111. https://doi.org/10.12659/MSMBR.931118
Hendra, R., Masdeatresa, L., Abdulah, R., & Haryani, Y. (2020). Red dragon peel (Hylocereus polyrhizus) is an antioxidant source. Paper presented at the AIP Conference Proceedings. https://doi.org/10.1063/5.0001391
Hirano, R., Sasamoto, W., Matsumoto, A., Itakura, H., Igarashi, O., & Kondo, K. (2001). The antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. Journal of Nutritional Science and Vitaminology, 47(5), 357-362. https://doi.org/10.3177/jnsv.47.357
Hovenkamp, P. H. (2003). Pyrrosia Mirbel. In W. P. De Winter & V. B. Amaroso (Eds.), Plant resources of South-East Asia No 15(2): Ferns and Fern Allies (pp. 170-174). Leiden: Backhuys
Hsu, C.-Y. (2008). Antioxidant activity of Pyrrosia petiolosa. Fitoterapia, 79(1), 64-66. https://doi.org/10.1016/j.fitote.2007.07.007
Imelda, E., Idroes, R., Khairan, K., Lubis, R. R., Abas, A. H., Nursalim, A. J., & Tallei, T. E. (2022). Natural Antioxidant Activities of Plants in Preventing Cataractogenesis. Antioxidants, 11(7), 1285. https://doi.org/10.3390/antiox11071285
Jasril, J., Teruna, H. Y., Aisyah, A., Nurlaili, N., & Hendra, R. (2019). Microwave Assisted Synthesis and Evaluation of Toxicity and Antioxidant Activity of Pyrazoline Derivatives. Indonesian Journal of Chemistry, 19(3), 583-591. https://doi.org/10.22146/ijc.34285
Karimi, E., Oskoueian, E., Hendra, R., & Jaafar, H. (2010). Solid state fermentation effects on pistachio hull antioxidant activities. Asia-Pacific Journal of Science and Technology, 15(5), 360-366. https://doi.org/10.3390/molecules15096244
Kedare, S. B., & Singh, R. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of food science and technology, 48(4), 412-422. https://doi.org/10.1007/s13197-011-0251-1
Khodijah, R., Teruna, H. Y., & Hendra, R. (2022). Antioxidant and α-Glucosidase inhibition of Pyrrosia longifolia extracts. Pharmacy Education, 22(2), 16-19. https://doi.org/10.46542/pe.2022.222.1619
Masuda, K., Yamashita, H., Shiojima, K., ITOH, T., & AGETA, H. (1997). Fern constituents: triterpenoids isolated from rhizomes of Pyrrosia lingua. I. Chemical and Pharmaceutical Bulletin, 45(4), 590-594. https://doi.org/10.1248/cpb.45.590
Meyer, B., Ferrigni, N., Putnam, J., Jacobsen, L., Nichols, D., & McLaughlin, J. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica, 45(1), 31-34. https://doi.org/10.1055/s-2007-971236
Pan, P., Cheng, J., Si, Y., Chen, W., Hou, J., Zhao, T., . . . Zhu, Z. (2021). A stop-flow comprehensive two-dimensional HK-2 and HK-2/CIKI cell membrane chromatography comparative analysis system for screening the active ingredients from Pyrrosia calvata (Bak.) Ching against crystal-induced kidney injury. Journal of Pharmaceutical and Biomedical Analysis, 195, 113825. https://doi.org/10.1016/j.jpba.2020.113825
Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11-26. https://doi.org/10.1007/s12291-014-0446-0
Sadono, R., SOEPRIJADI, D., SUSANTI, A., WIRABUANA, P. Y. A. P., & Matatula, J. (2020). Species composition and growth performance of mangrove forest at the coast of Tanah Merah, East Nusa Tenggara. Biodiversitas Journal of Biological Diversity, 21(12). https://doi.org/10.13057/biodiv/d211242
Sathiyaraj, G., Muthukumar, T., & Ravindran, K. C. (2015). Ethnomedicinal importance of fern and fern allies traditionally used by tribal people of Palani Hills (Kodaikanal), Western Ghats, South India. Journal of Medicinal Herbs and Ethnomedicine, 1, 4-9. https://doi.org/10.5455/jmhe.2015-07-08
Scherer, R., & Godoy, H. T. (2009). Antioxidant activity index (AAI) by the 2, 2-diphenyl-1-picrylhydrazyl method. Food Chemistry, 112(3), 654-658. https://doi.org/10.1016/j.foodchem.2008.06.026
Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of functional foods, 18, 757-781. https://doi.org/10.1016/j.jff.2015.01.047
Tong, W., Zaadah, J. N., Tan, W., Melati, K., Latiffah, Z., & Darah, I. (2014). Antimicrobial activity of Phomopsis sp. ED2 residing in medicinal plant Orthosiphon stamineus Benth. Annual Research & Review in Biology, 1490-1501. https://doi.org/10.9734/ARRB/2014/8060
Wu, C. (2014). An essential player in brine shrimp lethality bioassay: The solvent. Journal of advanced pharmaceutical technology & research, 5(1), 57
Xiao, W., Peng, Y., Tan, Z., Lv, Q., Chan, C.-o., Yang, J., & Chen, S. (2017). Comparative evaluation of chemical profiles of pyrrosiae folium originating from three Pyrrosia species by HPLC-DAD combined with multivariate statistical analysis. Molecules, 22(12), 2122. https://doi.org/10.3390/molecules22122122