Curcumin-mediated gene expression changes in Drosophila melanogaster

Authors

  • Nurfadhilah Asfa Universitas Hasanuddin, Makassar, Indonesia
  • Ahmad Shayful Widianto Universitas Hasanuddin, Makassar, Indonesia
  • Muhammad Khadafi Anugrah Pratama Universitas Hasanuddin, Makassar, Indonesia
  • Reski Amalia Rosa Universitas Hasanuddin, Makassar, Indonesia
  • Ahmad Mu’arif Universitas Hasanuddin, Makassar, Indonesia
  • Risfah Yulianty Universitas Hasanuddin, Makassar, Indonesia
  • Firzan Nainu Universitas Hasanuddin, Makassar, Indonesia https://orcid.org/0000-0003-0989-4023

DOI:

https://doi.org/10.46542/pe.2023.232.8491

Keywords:

Autoinflammatory disease, Ageing, Curcumin, Drosophila melanogaster

Abstract

Background: Curcumin has been suggested to be useful in the treatment of numerous diseases, including autoinflammation, that has been implicated in some pathological conditions. Experimentally, autoinflammatory phenotypes were observed in the short-lived Peptidoglycan recognition protein LB (PGRP-LB) mutant of Drosophila melanogaster.   

Objective: This study aimed to determine the effect of curcumin on the expression of ageing-related genes in the autoinflammatory model of D. melanogaster.   

Method: This study was performed using five test groups including untreated control, solvent control, and three groups given a series of curcumin concentrations: 10 µM, 50 µM, and 250 µM, separately. Survival assay and gene expression studies were carried out on these test groups.   

Result: The results revealed that the lifespan of the curcumin-treated groups was significantly improved in comparison to the control groups. Such phenotype was accompanied by the increased expression of srl and hsp22 genes in most, if not all, of the curcumin-treated groups and elevated expression of tom40, pepck, and cat genes was specifically detectable only in groups treated with 250 µM curcumin. On the contrary, the expression of indy was significantly reduced upon the administration of curcumin at all given concentrations.   

Conclusion: Based on these results, it can be inferred that supplementation of curcumin can improve the lifespan of the PGRP-LB mutant flies and this might be related to the changes in the expression of ageing-related genes.

Author Biographies

Nurfadhilah Asfa, Universitas Hasanuddin, Makassar, Indonesia

Faculty of Pharmacy

Ahmad Shayful Widianto, Universitas Hasanuddin, Makassar, Indonesia

Faculty of Pharmacy

Muhammad Khadafi Anugrah Pratama, Universitas Hasanuddin, Makassar, Indonesia

Faculty of Pharmacy

Reski Amalia Rosa, Universitas Hasanuddin, Makassar, Indonesia

Faculty of Pharmacy

Ahmad Mu’arif, Universitas Hasanuddin, Makassar, Indonesia

Faculty of Pharmacy

Risfah Yulianty, Universitas Hasanuddin, Makassar, Indonesia

Department of Pharmaceutical Science and Technology, Faculty of Pharmacy

Firzan Nainu, Universitas Hasanuddin, Makassar, Indonesia

Department of Pharmacy, Faculty of Pharmacy

References

Asbah, A., Ummussaadah, U., Parenden, N., Putri, A. S. W., Rosa, R. A., Rumata, N.R., Emran, T. B., Dhama, K., & Nainu, F. (2021). Pharmacological Effect of Caffeine on Drosophila melanogaster: A Proof-of-Concept in vivo Study for Nootropic Investigation. Archives of Razi Institute journal, 76(6), 1645-1654. https://doi.org/10.22092/ari.2021.356628.1884

Asfa, N., Mahfufah, U., Pratama, M.K.A., Rosa, R.A., Rumata, N.R., & Nainu, F. (2022). Imunosuppresive activity of Momordica charantia L. fruit extract on the NF-B pathway in Drosophila melanogaster. Biointerface Research in Applied Chemistry, 12(5), 6753-6762. https://doi.org/https://doi.org/10.33263/BRIAC125.67536762

Asri, R.M., Salim, E., Nainu, F., Hori, A., & Kuraishi, T. (2019). Sterile induction of innate immunity in Drosophila melanogaster. Frontiers in Bioscience-Landmark, 24(8), 1390-1400. https://doi.org/10.2741/4786

Betrains, A., Staels, F., Schrijvers, R., Meyts, I., Humblet-Baron, S., De Langhe, E., Wouters, C., Blockmans, D., & Vanderschueren, S. (2021). Systemic autoinflammatory disease in adults. Autoimmunity Reviews , 20(4), 102774. https://doi.org/10.1016/j.autrev.2021.102774

Bhatti, J.S., Bhatti, G.K., & Reddy, P.H. (2017). Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(5), 1066-1077. https://doi.org/https://doi.org/10.1016/j.bbadis.2016.11.010

Cedikova, M., Pitule, P., Kripnerova, M., Markova, M., & Kuncova, J. (2016). Multiple roles of mitochondria in aging processes. Physiological Research , 65(Suppl 5), S519-s531. https://doi.org/10.33549/physiolres.933538

Chongtham, A., & Agrawal, N. (2016). Curcumin modulates cell death and is protective in Huntington's disease model. Scientific Reports , 6, 18736. https://doi.org/10.1038/srep18736

Ciccarelli, F., De Martinis, M., & Ginaldi, L. (2014). An update on autoinflammatory diseases. Current Medicinal Chemistry, 21(3), 261-269. https://doi.org/10.2174/09298673113206660303

Cui, H., Kong, Y., & Zhang, H. (2011). Oxidative stress, mitochondrial dysfunction, and aging. Journal of Receptors and Signal Transduction, 2012, 646354. https://doi.org/10.1155/2012/646354

Dela Cruz, C.S., & Kang, M.J. (2018). Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion, 41, 37-44. https://doi.org/10.1016/j.mito.2017.12.001

Evangelakou, Z., Manola, M., Gumeni, S., & Trougakos, I.P. (2019). Nutrigenomics as a tool to study the impact of diet on aging and age-related diseases: the Drosophila approach. Genes & Nutrition, 14, 12. https://doi.org/10.1186/s12263-019-0638-6

George, J., & Jacobs, H.T. (2019). Minimal effects of spargel (PGC-1) overexpression in a Drosophila mitochondrial disease model. Biology Open, 8(7). https://doi.org/10.1242/bio.042135

Guo, C., Sun, L., Chen, X., & Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, 8(21). https://doi.org/10.3969/j.issn.1673-5374.2013.21.009

Hewlings, S.J., & Kalman, D.S. (2017). Curcumin: A Review of Its Effects on Human Health. Foods, 6(10). https://doi.org/10.3390/foods6100092

Huang, Y., Wan, Z., Wang, Z., & Zhou, B. (2019). Insulin signaling in Drosophila melanogaster mediates Aβ toxicity. Communications Biology, 2, 13. https://doi.org/10.1038/s42003-018-0253-x

Jadiya, P., & Tomar, D. (2020). Mitochondrial Protein Quality Control Mechanisms. Genes (Basel), 11(5). https://doi.org/10.3390/genes11050563

Jung, K.J., Lee, E.K., Kim, J.Y., Zou, Y., Sung, B., Heo, H.S., Kim, M.K., Lee, J., Kim, N.D., Yu, B.P., & Chung, H.Y. (2009). Effect of short term calorie restriction on pro-inflammatory NF-kB and AP-1 in aged rat kidney. Inflammation Research, 58(3), 143-150. https://doi.org/10.1007/s00011-008-7227-2

Kastner, D.L., Aksentijevich, I., & Goldbach-Mansky, R. (2010). Autoinflammatory disease reloaded: a clinical perspective. Cell, 140(6), 784-790. https://doi.org/10.1016/j.cell.2010.03.002

Kounatidis, I., Chtarbanova, S., Cao, Y., Hayne, M., Jayanth, D., Ganetzky, B., & Ligoxygakis, P. (2017). NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration. Cell Reports, 19(4), 836-848. https://doi.org/10.1016/j.celrep.2017.04.007

Liu, W., Duan, X., Fang, X., Shang, W., & Tong, C. (2018). Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity. Autophagy, 14(8), 1293-1309. https://doi.org/10.1080/15548627.2018.1474991

López-Armada, M.J., Riveiro-Naveira, R.R., Vaamonde-García, C., & Valcárcel-Ares, M.N. (2013). Mitochondrial dysfunction and the inflammatory response. Mitochondrion, 13(2), 106-118. https://doi.org/10.1016/j.mito.2013.01.003

López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039

Mc Auley, M.T., Guimera, A.M., Hodgson, D., McDonald, N., Mooney, K.M., Morgan, A.E., & Proctor, C.J. (2017). Modelling the molecular mechanisms of aging. Bioscience Reports, 37(1). https://doi.org/10.1042/bsr20160177

McIntyre, R.L., Denis, S.W., Kamble, R., Molenaars, M., Petr, M., Schomakers, B.V., Rahman, M., Gupta, S., Toth, M.L., Vanapalli, S.A., Jongejan, A., Scheibye-Knudsen, M., Houtkooper, R.H., & Janssens, G.E. (2021). Inhibition of the neuromuscular acetylcholine receptor with atracurium activates FOXO/DAF-16-induced longevity. Aging Cell, 20(8), e13381. https://doi.org/10.1111/acel.13381

Mikhed, Y., Daiber, A., & Steven, S. (2015). Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction. International Journal of Molecular Sciences, 16(7), 15918-15953. https://doi.org/10.3390/ijms160715918

Nainu, F., Bahar, M.A., Sartini, S., Rosa, R.A., Rahmah, N., Kamri, R.A., Rumata, N.R., Yulianty, R., & Wahyudin, E. (2022). Proof-of-Concept Preclinical Use of Drosophila melanogaster in the Initial Screening of Immunomodulators. Scientia Pharmaceutica, 90(1), 11. https://www.mdpi.com/2218-0532/90/1/11

Nainu, F., Salim, E., Asri, R.M., Hori, A., & Kuraishi, T. (2019, Sep 1). Neurodegenerative disorders and sterile inflammation: lessons from a Drosophila model. Journal of Biochemistry, 166(3), 213-221. https://doi.org/10.1093/jb/mvz053

Nandi, A., Yan, L.J., Jana, C.K., & Das, N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Medicine and Cellular Longevity, 2019, 9613090. https://doi.org/10.1155/2019/9613090

Olivo-Marston, S.E., Hursting, S.D., Perkins, S.N., Schetter, A., Khan, M., Croce, C., Harris, C.C., & Lavigne, J. (2014). Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression. PLoS One, 9(4), e94765. https://doi.org/10.1371/journal.pone.0094765

Onken, B., Kalinava, N., & Driscoll, M. (2020). Gluconeogenesis and PEPCK are critical components of healthy aging and dietary restriction life extension. PLOS Genetics, 16(8), e1008982. https://doi.org/10.1371/journal.pgen.1008982

Orlans, J., Vincent-Monegat, C., Rahioui, I., Sivignon, C., Butryn, A., Soulère, L., Zaidman-Remy, A., Orville, A.M., Heddi, A., Aller, P., & Da Silva, P. (2021). PGRP-LB: An Inside View into the Mechanism of the Amidase Reaction. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/ijms22094957

Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763

Riley, J.S., & Tait, S.W. (2020, Apr 3). Mitochondrial DNA in inflammation and immunity. EMBO Rep, 21(4), e49799. https://doi.org/10.15252/embr.201949799

Rogers, R. P., & Rogina, B. (2015). The role of INDY in metabolism, health and longevity. Frontiers in Genetics, 6, 204. https://doi.org/10.3389/fgene.2015.00204

Sullivan-Gunn, M.J., & Lewandowski, P.A. (2013). Elevated hydrogen peroxide and decreased catalase and glutathione peroxidase protection are associated with aging sarcopenia. BMC Geriatrics, 13(1), 104. https://doi.org/10.1186/1471-2318-13-104

Taniguchi, K., & Karin, M. (2018). NF-κB, inflammation, immunity and cancer: coming of age. Nature Reviews Immunology, 18(5), 309-324. https://doi.org/10.1038/nri.2017.142

Tirichen, H., Yaigoub, H., Xu, W., Wu, C., Li, R., & Li, Y. (2021). Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Frontiers in Physiology, 12, 627837. https://doi.org/10.3389/fphys.2021.627837

Tower, J. (2015). Superoxide Dismutase (SOD) Genes and Aging in Drosophila . In: Vaiserman, A., Moskalev, A., Pasyukova, E. (eds) Life Extension. Healthy Ageing and Longevity, 3. Springer, Cham. https://doi.org/10.1007/978-3-319-18326-8_3

Tower, J., Landis, G., Gao, R., Luan, A., Lee, J., & Sun, Y. (2014). Variegated expression of Hsp22 transgenic reporters indicates cell-specific patterns of aging in Drosophila oenocytes. Journals of gerontology. Series A, Biological sciences and medical sciences, 69(3), 253-259. https://doi.org/10.1093/gerona/glt078

Yuan, Y., Hakimi, P., Kao, C., Kao, A., Liu, R., Janocha, A., Boyd-Tressler, A., Hang, X., Alhoraibi, H., Slater, E., Xia, K., Cao, P., Shue, Q., Ching, T. T., Hsu, A. L., Erzurum, S. C., Dubyak, G. R., Berger, N. A., Hanson, R. W., & Feng, Z. (2016). Reciprocal Changes in Phosphoenolpyruvate Carboxykinase and Pyruvate Kinase with Age Are a Determinant of Aging in Caenorhabditis elegans. Journal of Biological Chemistry, 291(3), 1307-1319. https://doi.org/10.1074/jbc.M115.691766

Zhang, N., Li, Z., Mu, W., Li, L., Liang, Y., Lu, M., Wang, Z., Qiu, Y., & Wang, Z. (2016, 2016/04/02). Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-κB signaling. Cell Cycle, 15(7), 1009-1018. https://doi.org/10.1080/15384101.2016.1152427

Downloads

Published

15-05-2023

How to Cite

Asfa, N., Widianto, A. S., Pratama, M. K. A., Rosa, R. A., Mu’arif, A., Yulianty, R., & Nainu, F. (2023). Curcumin-mediated gene expression changes in Drosophila melanogaster. Pharmacy Education, 23(2), p. 84–91. https://doi.org/10.46542/pe.2023.232.8491

Issue

Section

Special Edition