Curcumin-mediated gene expression changes in Drosophila melanogaster
DOI:
https://doi.org/10.46542/pe.2023.232.8491Keywords:
Autoinflammatory disease, Ageing, Curcumin, Drosophila melanogasterAbstract
Background: Curcumin has been suggested to be useful in the treatment of numerous diseases, including autoinflammation, that has been implicated in some pathological conditions. Experimentally, autoinflammatory phenotypes were observed in the short-lived Peptidoglycan recognition protein LB (PGRP-LB) mutant of Drosophila melanogaster.
Objective: This study aimed to determine the effect of curcumin on the expression of ageing-related genes in the autoinflammatory model of D. melanogaster.
Method: This study was performed using five test groups including untreated control, solvent control, and three groups given a series of curcumin concentrations: 10 µM, 50 µM, and 250 µM, separately. Survival assay and gene expression studies were carried out on these test groups.
Result: The results revealed that the lifespan of the curcumin-treated groups was significantly improved in comparison to the control groups. Such phenotype was accompanied by the increased expression of srl and hsp22 genes in most, if not all, of the curcumin-treated groups and elevated expression of tom40, pepck, and cat genes was specifically detectable only in groups treated with 250 µM curcumin. On the contrary, the expression of indy was significantly reduced upon the administration of curcumin at all given concentrations.
Conclusion: Based on these results, it can be inferred that supplementation of curcumin can improve the lifespan of the PGRP-LB mutant flies and this might be related to the changes in the expression of ageing-related genes.
References
Asbah, A., Ummussaadah, U., Parenden, N., Putri, A. S. W., Rosa, R. A., Rumata, N.R., Emran, T. B., Dhama, K., & Nainu, F. (2021). Pharmacological Effect of Caffeine on Drosophila melanogaster: A Proof-of-Concept in vivo Study for Nootropic Investigation. Archives of Razi Institute journal, 76(6), 1645-1654. https://doi.org/10.22092/ari.2021.356628.1884
Asfa, N., Mahfufah, U., Pratama, M.K.A., Rosa, R.A., Rumata, N.R., & Nainu, F. (2022). Imunosuppresive activity of Momordica charantia L. fruit extract on the NF-B pathway in Drosophila melanogaster. Biointerface Research in Applied Chemistry, 12(5), 6753-6762. https://doi.org/https://doi.org/10.33263/BRIAC125.67536762
Asri, R.M., Salim, E., Nainu, F., Hori, A., & Kuraishi, T. (2019). Sterile induction of innate immunity in Drosophila melanogaster. Frontiers in Bioscience-Landmark, 24(8), 1390-1400. https://doi.org/10.2741/4786
Betrains, A., Staels, F., Schrijvers, R., Meyts, I., Humblet-Baron, S., De Langhe, E., Wouters, C., Blockmans, D., & Vanderschueren, S. (2021). Systemic autoinflammatory disease in adults. Autoimmunity Reviews , 20(4), 102774. https://doi.org/10.1016/j.autrev.2021.102774
Bhatti, J.S., Bhatti, G.K., & Reddy, P.H. (2017). Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(5), 1066-1077. https://doi.org/https://doi.org/10.1016/j.bbadis.2016.11.010
Cedikova, M., Pitule, P., Kripnerova, M., Markova, M., & Kuncova, J. (2016). Multiple roles of mitochondria in aging processes. Physiological Research , 65(Suppl 5), S519-s531. https://doi.org/10.33549/physiolres.933538
Chongtham, A., & Agrawal, N. (2016). Curcumin modulates cell death and is protective in Huntington's disease model. Scientific Reports , 6, 18736. https://doi.org/10.1038/srep18736
Ciccarelli, F., De Martinis, M., & Ginaldi, L. (2014). An update on autoinflammatory diseases. Current Medicinal Chemistry, 21(3), 261-269. https://doi.org/10.2174/09298673113206660303
Cui, H., Kong, Y., & Zhang, H. (2011). Oxidative stress, mitochondrial dysfunction, and aging. Journal of Receptors and Signal Transduction, 2012, 646354. https://doi.org/10.1155/2012/646354
Dela Cruz, C.S., & Kang, M.J. (2018). Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion, 41, 37-44. https://doi.org/10.1016/j.mito.2017.12.001
Evangelakou, Z., Manola, M., Gumeni, S., & Trougakos, I.P. (2019). Nutrigenomics as a tool to study the impact of diet on aging and age-related diseases: the Drosophila approach. Genes & Nutrition, 14, 12. https://doi.org/10.1186/s12263-019-0638-6
George, J., & Jacobs, H.T. (2019). Minimal effects of spargel (PGC-1) overexpression in a Drosophila mitochondrial disease model. Biology Open, 8(7). https://doi.org/10.1242/bio.042135
Guo, C., Sun, L., Chen, X., & Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, 8(21). https://doi.org/10.3969/j.issn.1673-5374.2013.21.009
Hewlings, S.J., & Kalman, D.S. (2017). Curcumin: A Review of Its Effects on Human Health. Foods, 6(10). https://doi.org/10.3390/foods6100092
Huang, Y., Wan, Z., Wang, Z., & Zhou, B. (2019). Insulin signaling in Drosophila melanogaster mediates Aβ toxicity. Communications Biology, 2, 13. https://doi.org/10.1038/s42003-018-0253-x
Jadiya, P., & Tomar, D. (2020). Mitochondrial Protein Quality Control Mechanisms. Genes (Basel), 11(5). https://doi.org/10.3390/genes11050563
Jung, K.J., Lee, E.K., Kim, J.Y., Zou, Y., Sung, B., Heo, H.S., Kim, M.K., Lee, J., Kim, N.D., Yu, B.P., & Chung, H.Y. (2009). Effect of short term calorie restriction on pro-inflammatory NF-kB and AP-1 in aged rat kidney. Inflammation Research, 58(3), 143-150. https://doi.org/10.1007/s00011-008-7227-2
Kastner, D.L., Aksentijevich, I., & Goldbach-Mansky, R. (2010). Autoinflammatory disease reloaded: a clinical perspective. Cell, 140(6), 784-790. https://doi.org/10.1016/j.cell.2010.03.002
Kounatidis, I., Chtarbanova, S., Cao, Y., Hayne, M., Jayanth, D., Ganetzky, B., & Ligoxygakis, P. (2017). NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration. Cell Reports, 19(4), 836-848. https://doi.org/10.1016/j.celrep.2017.04.007
Liu, W., Duan, X., Fang, X., Shang, W., & Tong, C. (2018). Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity. Autophagy, 14(8), 1293-1309. https://doi.org/10.1080/15548627.2018.1474991
López-Armada, M.J., Riveiro-Naveira, R.R., Vaamonde-García, C., & Valcárcel-Ares, M.N. (2013). Mitochondrial dysfunction and the inflammatory response. Mitochondrion, 13(2), 106-118. https://doi.org/10.1016/j.mito.2013.01.003
López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
Mc Auley, M.T., Guimera, A.M., Hodgson, D., McDonald, N., Mooney, K.M., Morgan, A.E., & Proctor, C.J. (2017). Modelling the molecular mechanisms of aging. Bioscience Reports, 37(1). https://doi.org/10.1042/bsr20160177
McIntyre, R.L., Denis, S.W., Kamble, R., Molenaars, M., Petr, M., Schomakers, B.V., Rahman, M., Gupta, S., Toth, M.L., Vanapalli, S.A., Jongejan, A., Scheibye-Knudsen, M., Houtkooper, R.H., & Janssens, G.E. (2021). Inhibition of the neuromuscular acetylcholine receptor with atracurium activates FOXO/DAF-16-induced longevity. Aging Cell, 20(8), e13381. https://doi.org/10.1111/acel.13381
Mikhed, Y., Daiber, A., & Steven, S. (2015). Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction. International Journal of Molecular Sciences, 16(7), 15918-15953. https://doi.org/10.3390/ijms160715918
Nainu, F., Bahar, M.A., Sartini, S., Rosa, R.A., Rahmah, N., Kamri, R.A., Rumata, N.R., Yulianty, R., & Wahyudin, E. (2022). Proof-of-Concept Preclinical Use of Drosophila melanogaster in the Initial Screening of Immunomodulators. Scientia Pharmaceutica, 90(1), 11. https://www.mdpi.com/2218-0532/90/1/11
Nainu, F., Salim, E., Asri, R.M., Hori, A., & Kuraishi, T. (2019, Sep 1). Neurodegenerative disorders and sterile inflammation: lessons from a Drosophila model. Journal of Biochemistry, 166(3), 213-221. https://doi.org/10.1093/jb/mvz053
Nandi, A., Yan, L.J., Jana, C.K., & Das, N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Medicine and Cellular Longevity, 2019, 9613090. https://doi.org/10.1155/2019/9613090
Olivo-Marston, S.E., Hursting, S.D., Perkins, S.N., Schetter, A., Khan, M., Croce, C., Harris, C.C., & Lavigne, J. (2014). Effects of calorie restriction and diet-induced obesity on murine colon carcinogenesis, growth and inflammatory factors, and microRNA expression. PLoS One, 9(4), e94765. https://doi.org/10.1371/journal.pone.0094765
Onken, B., Kalinava, N., & Driscoll, M. (2020). Gluconeogenesis and PEPCK are critical components of healthy aging and dietary restriction life extension. PLOS Genetics, 16(8), e1008982. https://doi.org/10.1371/journal.pgen.1008982
Orlans, J., Vincent-Monegat, C., Rahioui, I., Sivignon, C., Butryn, A., Soulère, L., Zaidman-Remy, A., Orville, A.M., Heddi, A., Aller, P., & Da Silva, P. (2021). PGRP-LB: An Inside View into the Mechanism of the Amidase Reaction. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/ijms22094957
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763
Riley, J.S., & Tait, S.W. (2020, Apr 3). Mitochondrial DNA in inflammation and immunity. EMBO Rep, 21(4), e49799. https://doi.org/10.15252/embr.201949799
Rogers, R. P., & Rogina, B. (2015). The role of INDY in metabolism, health and longevity. Frontiers in Genetics, 6, 204. https://doi.org/10.3389/fgene.2015.00204
Sullivan-Gunn, M.J., & Lewandowski, P.A. (2013). Elevated hydrogen peroxide and decreased catalase and glutathione peroxidase protection are associated with aging sarcopenia. BMC Geriatrics, 13(1), 104. https://doi.org/10.1186/1471-2318-13-104
Taniguchi, K., & Karin, M. (2018). NF-κB, inflammation, immunity and cancer: coming of age. Nature Reviews Immunology, 18(5), 309-324. https://doi.org/10.1038/nri.2017.142
Tirichen, H., Yaigoub, H., Xu, W., Wu, C., Li, R., & Li, Y. (2021). Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Frontiers in Physiology, 12, 627837. https://doi.org/10.3389/fphys.2021.627837
Tower, J. (2015). Superoxide Dismutase (SOD) Genes and Aging in Drosophila . In: Vaiserman, A., Moskalev, A., Pasyukova, E. (eds) Life Extension. Healthy Ageing and Longevity, 3. Springer, Cham. https://doi.org/10.1007/978-3-319-18326-8_3
Tower, J., Landis, G., Gao, R., Luan, A., Lee, J., & Sun, Y. (2014). Variegated expression of Hsp22 transgenic reporters indicates cell-specific patterns of aging in Drosophila oenocytes. Journals of gerontology. Series A, Biological sciences and medical sciences, 69(3), 253-259. https://doi.org/10.1093/gerona/glt078
Yuan, Y., Hakimi, P., Kao, C., Kao, A., Liu, R., Janocha, A., Boyd-Tressler, A., Hang, X., Alhoraibi, H., Slater, E., Xia, K., Cao, P., Shue, Q., Ching, T. T., Hsu, A. L., Erzurum, S. C., Dubyak, G. R., Berger, N. A., Hanson, R. W., & Feng, Z. (2016). Reciprocal Changes in Phosphoenolpyruvate Carboxykinase and Pyruvate Kinase with Age Are a Determinant of Aging in Caenorhabditis elegans. Journal of Biological Chemistry, 291(3), 1307-1319. https://doi.org/10.1074/jbc.M115.691766
Zhang, N., Li, Z., Mu, W., Li, L., Liang, Y., Lu, M., Wang, Z., Qiu, Y., & Wang, Z. (2016, 2016/04/02). Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-κB signaling. Cell Cycle, 15(7), 1009-1018. https://doi.org/10.1080/15384101.2016.1152427