The effect of Aspergillus oryzae and Rhizopus aspergillus fermentation on daidzein content in edamame (glycine max)
DOI:
https://doi.org/10.46542/pe.2023.232.1418Keywords:
Aspergillus oryzae, Daidzein content, Edamame, Rhizopus oligosporus, TLC densitometry, Validation method of analysisAbstract
Background: Previous studies show that fermentation using Aspergillus oryzae and Rhizopus oligopsorus increases the aglyconic isoflavone in soybean with the highest content reached on the seventh day. Still, no research has been done on edamame.
Objective: This study was conducted to validate the method and determine aglyconic isoflavone, daidzein, content in non-fermented and A. oryzae and R. oligopsorus fermented edamame using TLC densitometry.
Method: TLC densitometry method used was validated, then used to determine daidzein content in non-fermented edamame, and edamame fermented with the combination of A. oryzae and R. oligopsorus for four days (D1 - D4).
Results: The TLC method met all the validation method, except for the selectivity. The daidzein content on non-fermented and fermented edamame (D1 - D4) was 0.0354+1.49*10-3, 0.0099+1.19*10-3, 0.0118+0.16*10-3,0.0156+0.65*10-3, and 0.0618+10.67*10-3, respectively.
Conclusion: The highest daidzein content was reached at the fourth day of fermentation.
References
Chang T.S. (2009). An updated review of tyrosinase inhibitors. International journal of molecular sciences, 10(6), 2440–2475. https://doi.org/10.3390/ijms10062440
Choi, S.Y., Ha, T.Y., Ahn, J.Y., Kim, S.R., Kang, K.S., Hwang, I.K., & Kim, S. (2008). Estrogenic activities of isoflavones and flavones and their structure-activity relationships. Planta medica, 74(1), 25–32. https://doi.org/10.1055/s-2007-993760
Dwinanto, S. (2011). Tempe. Wacana Didaktika, 1(6), 25–32
Hutabarat, L.S., Greenfield, H., & Mulholland, M. (2000). Quantitative determination of isoflavones and coumestrol in soybean by column liquid chromatography. Journal of chromatography A, 886(1–2), 55–63.
ICH Expert Working Group. (2005). ICH harmonised tripartite guideline–Validation of analytical procedures text and methodology: Q2 (R1). Geneva: International Conference on Harmonisation of Technical Requirements for Registrataion of Pharmaceuticals for Human Use
Jayanti, D., Wuryanti, & Taslimah. (2013). Isolation, characterization, and α-amilase amounting of Aspergillus oryzae FNCC 6004. Journal of Chemistry Information, 1(1), 76–84
Kameda, T., Aoki, H., Yanaka, N., Kumrungsee, T., & Kato, N. (2018). Production of isoflavone aglycone-enriched tempeh with rhizopus stolonifer. Food Science and Technology Research, 24(3), 493–499
Machida, M., Yamada, O., & Gomi, K. (2008). Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA research: an international journal for rapid publication of reports on genes and genomes, 15(4), 173–183. https://doi.org/10.1093/dnares/dsn020
Miao, H., Qi, T., & Zhao, H. (2005). Methods for extracting, separating, identifying and quantifying daidzein and genistein. Chinese Journal of Applied and Environmental Biology, 11(3), 293–295
Pandit, N.T., & Patravale, V.B. (2011). Design and optimization of a novel method for extraction of genistein. Indian journal of pharmaceutical sciences, 73(2), 184
Picherit, C., Coxam, V., Bennetau-Pelissero, C., Kati-Coulibaly, S., Davicco, M.-J., Lebecque, P., & Barlet, J.-P. (2000). Daidzein is more efficient than genistein in preventing ovariectomy-induced bone loss in rats. The Journal of nutrition, 130(7), 1675–1681
Praharini, S.R., Ulfa, E.U., Puspitasari, E., & Hidayat, M.A. (2015). The effect of the fermentation of Rhizopus oligosporus over isoflavone genistein, and tyrosinase soybean inhibitor activity in vitro. University of Jember
Purwoko, T., Pawiroharsono, S., & Gandjar, I. (2001). The Isoflavone biotransformation by Rhizopus oryzae UICC 524. BioSMART, 3(2), 7–12
Rossouw, J.E., Anderson, G.L., Prentice, R.L., LaCroix, A.Z., Kooperberg, C., Stefanick, M.L., Jackson, R.D., Beresford, S. A., Howard, B.V., Johnson, K.C., Kotchen, J.M., Ockene, J., & Writing Group for the Women's Health Initiative Investigators (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA, 288(3), 321–333. https://doi.org/10.1001/jama.288.3.321
Santell, R.C., Chang, Y.C., Nair, M.G., & Helferich, W.G. (1997). Dietary genistein exerts estrogenic effects upon the uterus, mammary gland and the hypothalamic/pituitary axis in rats. The Journal of nutrition, 127(2), 263–269. Oxford University Press
Song, T.T., Hendrich, S., & Murphy, P.A. (1999). Estrogenic activity of glycitein, a soy isoflavone. Journal of Agricultural and Food Chemistry, 47(4), 1607–1610. ACS Publications
Teekachunhatean, S., Hanprasertpong, N., & Teekachunhatean, T. (2013). Factors affecting isoflavone content in soybean seeds grown in Thailand. International Journal of Agronomy, 2013. Hindawi
Wang, H.-J., & Murphy, P.A. (1994). Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year, and location. Journal of agricultural and food chemistry, 42(8), 1674–1677. ACS Publications
Yunindarwati, E., Ulfa, E. U., Puspitasari, E., & Hidayat, M. A. (2017). Determination of genistein content and tyrosinase inhibition activity of soybean (Glycine max) fermented with Aspergillus oryzae. Jurnal Ilmu Kefarmasian Indonesia, 14(1), 1–7
Zeipina, S., Alsina, I., & Lepse, L. (2017). Insight in edamame yield and quality parameters