In silico study of aminothiazole, benzohydrazide, namoline, piridine, and parnate derivatives as Jumonji domain histone lysine demethylase (KDM1A, KDM4A, KDM4C, KDM4E, AND KDM5B) inhibitors in prostate cancer

Authors

  • Fauzan Zein Muttaqin Faculty of Pharmacy, Bhakti Kencana University, Bandung, Indonesia
  • Revi Fahlevi Faculty of Pharmacy, Bhakti Kencana University, Bandung, Indonesia
  • Hubbi Nasrullah Muhammad School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia

DOI:

https://doi.org/10.46542/pe.2023.232.253259

Keywords:

Histone lysine demethylase, Molecular docking, Molecular dynamic

Abstract

Background: Prostate cancer is the second most common type of cancer in men. The histone lysine demethylase enzyme is believed to be one of the genetic factors that cause prostate cancer. Based on in vivo testing, a group of compounds from the aminothiazole, benzohydrazide, pyridine, namoline, and parnate classes have been experimentally proven to be inhibitors of the histone lysine demethylase enzyme.

Objective: This study aimed to investigate the interaction of 20 compounds consisting of aminothiazole, benzohydrazide, pyridine, namoline, and parnate derivatives with histone lysine demethylase enzymes (KDM1A, KDM4A, KDM4C, KDM4E, and KDM5B) in silico.

Method: Molecular docking was performed using Autodock Tools v.4.2.3 to obtain the affinity of test compounds against the target molecule. This was followed by molecular dynamics (MD) simulation of some test compounds with the lowest inhibition constant using Gromacs software. Toxicity prediction was conducted to predict the safety of the test compounds.

Result: The docking results revealed the top five compounds for each receptor with the lowest inhibition constant and free binding energy value (∆G), suggesting the best affinity to histone lysine demethylase enzymes. The results from MD showed that the compounds with the codes aminothiazole, pyridine, parnate 1, parnate 2, and parnate 5 were stable when bound to the KDM1A receptor. The toxicity test results also indicated that the test compounds were safe and had a low health risk, as they were neither genotoxic nor non-genotoxic carcinogens.

Conclusion: Based on the research results, it can be concluded that compounds with the codes aminothiazole, pyridine, parnate 1, parnate 2, and parnate 5 can serve as inhibitors of histone lysine demethylase enzymes on the KDM1A receptor and are stable when bound to the receptor.

Author Biographies

Fauzan Zein Muttaqin, Faculty of Pharmacy, Bhakti Kencana University, Bandung, Indonesia

 

 

Revi Fahlevi, Faculty of Pharmacy, Bhakti Kencana University, Bandung, Indonesia

 

 

Hubbi Nasrullah Muhammad, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia

 

 

References

American Cancer Society. (2022). Prostate Cancer. https://www.cancer.org/cancer/prostate-cancer.html

Benigni, R., Bossa, C., Netzeva, T., Rodomonte, A., & Tsakovska, I. (2007). Mechanistic QSAR of aromatic amines: New models for discriminating between homocyclic mutagens and nonmutagens, and validation of models for carcinogens. Environmental and Molecular Mutagenesis, 48(9), 754–771. https://doi.org/10.1002/em.20355

Center, M. M., Jemal, A., Lortet-Tieulent, J., Ward, E., Ferlay, J., Brawley, O., & Bray, F. (2012). International variation in prostate cancer incidence and mortality rates. In European Urology, 61(6), 1079–1092. https://doi.org/10.1016/j.eururo.2012.02.054

Chang, K. H., King, O. N. F., Tumber, A., Woon, E. C. Y., Heightman, T. D., Mcdonough, M. A., Schofield, C. J., & Rose, N. R. (2011). Inhibition of histone demethylases by 4-Carboxy-2,2’-Bipyridyl compounds. ChemMedChem, 6(5), 759–764. https://doi.org/10.1002/cmdc.201100026

Cloos, P. A. C., Christensen, J., Agger, K., & Helin, K. (2008). Erasing the methyl mark: Histone demethylases at the center of cellular differentiation and disease. In Genes and Development, 22(9), 1115–1140. https://doi.org/10.1101/gad.1652908

Cramer, G. M., Ford, R. A., & Hall, R. L. (1978). Review Section ESTIMATION OF TOXIC HAZARD-A DECISION TREE APPROACH, 16. Pergamon Press. https://doi.org/10.1016/S0015-6264(76)80522-6

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 09, Revision E.01. Gaussian, Inc

GROMACS Documentation Release 2023 GROMACS development team. (2023)

Heidenreich, A., Bastian, P. J., Bellmunt, J., Bolla, M., Joniau, S., Van Der Kwast, T., Mason, M., Matveev, V., Wiegel, T., Zattoni, F., & Mottet, N. (2014). EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent - Update 2013. European Urology, 65(1), 124–137. https://doi.org/10.1016/j.eururo.2013.09.046

Hillringhaus, L., Yue, W. W., Rose, N. R., Ng, S. S., Gileadi, C., Loenarz, C., Bello, S. H., Bray, J. E., Schofield, C. J., & Oppermann, U. (2011). Structural and evolutionary basis for the dual substrate selectivity of human KDM4 histone demethylase family. Journal of Biological Chemistry, 286(48), 41616–41625. https://doi.org/10.1074/jbc.M111.283689

Jemal, A., Ward, E. M., Johnson, C. J., Cronin, K. A., Ma, J., Ryerson, A. B., Mariotto, A., Lake, A. J., Wilson, R., Sherman, R. L., Anderson, R. N., Henley, S. J., Kohler, B. A., Penberthy, L., Feuer, E. J., & Weir, H. K. (2017). Annual Report to the Nation on the Status of Cancer, 1975-2014, Featuring Survival. In Journal of the National Cancer Institute, 109(9). Oxford University Press. https://doi.org/10.1093/jnci/djx030

Jerónimo, C., Bastian, P. J., Bjartell, A., Carbone, G. M., Catto, J. W. F., Clark, S. J., Henrique, R., Nelson, W. G., & Shariat, S. F. (2011). Epigenetics in prostate cancer: Biologic and clinical relevance. In European Urology, 60(4), 753–766). https://doi.org/10.1016/j.eururo.2011.06.035

Johansson, C., Velupillai, S., Tumber, A., Szykowska, A., Hookway, E. S., Nowak, R. P., Strain-Damerell, C., Gileadi, C., Philpott, M., Burgess-Brown, N., Wu, N., Kopec, J., Nuzzi, A., Steuber, H., Egner, U., Badock, V., Munro, S., Lathangue, N. B., Westaway, S., … Oppermann, U. (2016). Structural analysis of human KDM5B guides histone demethylase inhibitor development. Nature Chemical Biology, 12(7), 539–545. https://doi.org/10.1038/nchembio.2087

Kroes, R., Renwick, A. G., Cheeseman, M., Kleiner, J., Mangelsdorf, I., Piersma, A., Schilter, B., Schlatter, J., Van Schothorst, F., Vos, J. G., & Würtzen, G. (2004). Structure-based thresholds of toxicological concern (TTC): Guidance for application to substances present at low levels in the diet. Food and Chemical Toxicology, 42(1), 65–83. https://doi.org/10.1016/j.fct.2003.08.006

Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256

Muttaqin, F. Z., Fakih, T. M., & Muhammad, H. N. (2017). Molecular docking, molecular dynamics, and in silico toxicity prediction studies of coumarin, N-Oxalylglycine, organoselenium, organosulfur, and pyridine derivatives as histone lysine demethylase inhibitors. Asian Journal of Pharmaceutical and Clinical Research, 10(12). https://doi.org/10.22159/ajpcr.2017.v10i12.19348

Muttaqin, F. Z., Sari, A. P. R., & Kurniawan, F. (2022). Molecular docking study of vemurafenib derivatives on melanoma inhibitory activity (MIA) as anti-melanoma. Pharmacy Education, 22(2), 284–288. https://doi.org/10.46542/pe.2022.222.284288

Patlewicz, G., Jeliazkova, N., Safford, R. J., Worth, A. P., & Aleksiev, B. (2008). An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR and QSAR in Environmental Research, 19(5–6), 495–524. https://doi.org/10.1080/10629360802083871

Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33. https://doi.org/10.3322/caac.21654

Vianello, P., Botrugno, O. A., Cappa, A., Ciossani, G., Dessanti, P., Mai, A., Mattevi, A., Meroni, G., Minucci, S., Thaler, F., Tortorici, M., Trifiró, P., Valente, S., Villa, M., Varasi, M., & Mercurio, C. (2014). Synthesis, biological activity and mechanistic insights of 1-substituted cyclopropylamine derivatives: A novel class of irreversible inhibitors of histone demethylase KDM1A. European Journal of Medicinal Chemistry, 86, 352–363. https://doi.org/10.1016/j.ejmech.2014.08.068

Wang, L.-Y., Guo, W., Kim, K., Pochampalli, M., Hung, C.-L., Izumiya, Y., & Kung, H.-J. (2014). Histone Demethylases in Prostate Cancer. In R. Kumar (Ed.), Nuclear Signaling Pathways and Targeting Transcription in Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/https://doi.org/10.1007/978-1-4614-8039-6_15

World Health Organization. (2023). Prostate cancer. https://www.who.int/cancer/prevention/diagnosis-screening/prostate-cancer/en/

Downloads

Published

09-06-2023

How to Cite

Muttaqin, F. Z., Fahlevi, R., & Muhammad, H. N. (2023). In silico study of aminothiazole, benzohydrazide, namoline, piridine, and parnate derivatives as Jumonji domain histone lysine demethylase (KDM1A, KDM4A, KDM4C, KDM4E, AND KDM5B) inhibitors in prostate cancer. Pharmacy Education, 23(2), p. 253–259. https://doi.org/10.46542/pe.2023.232.253259

Issue

Section

Special Edition